【題目】若定義在R上的偶函數(shù)滿足
,且
時,
,則函數(shù)
的零點個數(shù)是( )
A. 6個B. 8個C. 2個D. 4個
【答案】D
【解析】
先根據(jù)奇偶性和周期性作出f(x)在R上的圖象,再在同一個坐標系中作出 的圖象,根據(jù)兩圖像交點個數(shù)即可得出h(x)的零點個數(shù)。
解:∵定義在R上的偶函數(shù)f(x)滿足f(x+1)=﹣f(x),
∴滿足f(x+2)=f(x),
故函數(shù)的周期為2.
當x∈[0,1]時,f(x)=x,
故當x∈[﹣1,0]時,f(x)=-x.
函數(shù)h(x)=f(x)﹣的零點的個數(shù)等于函數(shù)y=f(x)的圖象與函數(shù)y=
的圖象的交點個數(shù).
在同一個坐標系中畫出函數(shù)y=f(x)的圖象與函數(shù)y=的圖象,如圖所示:
顯然函數(shù)y=f(x)的圖象與函數(shù)y=的圖象有4個交點,
故選:D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)為曲線
上的動點,點
在線段
上,且滿足
,求點
的軌跡
的直角坐標方程;
(2)設(shè)點的極坐標為
,點
在曲線
上,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在直角坐標系內(nèi),直線
的參數(shù)方程為
(
為參數(shù),
為傾斜角).以
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(Ⅰ)寫出曲線的直角坐標方程及直線
經(jīng)過的定點
的坐標;
(Ⅱ)設(shè)直線與曲線
相交于兩點
,求點
到
兩點的距離之和的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、
、
是三條不同的直線,
、
、
是三個不同的平面,給出下列四個命題:
①若,
,
,
,
,則
;
②若,
,則
;
③若,
是兩條異面直線,
,
,
,
且
,則
;
④若,
,
,
,
,則
.
其中正確命題的序號是( )
A.①③B.①④C.②③D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,曲線
,曲線
(
為參數(shù)),以坐標原點O為極點,以x軸的正半軸為極軸建立極坐標系.
(1)求,
的極坐標方程;
(2)射線l的極坐標方程為,若l分別與
,
交于異于極點的
,
兩點,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
).
(I)若,求曲線
在點
處的切線方程;
(II)若在
上無極值點,求
的值;
(III)當時,討論函數(shù)
的零點個數(shù),并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com