日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù).

          (1)求a;

          (2)證明:存在唯一的極大值點(diǎn),且.

          【答案】(1)a=1;(2)見(jiàn)解析.

          【解析】試題分析:(1)根據(jù)題意結(jié)合導(dǎo)函數(shù)與原函數(shù)的關(guān)系可求得,注意驗(yàn)證結(jié)果的正確性;(2)結(jié)合(1)的結(jié)論構(gòu)造函數(shù),結(jié)合的單調(diào)性和的解析式即可證得題中的不等式成立.

          試題解析:(1)的定義域?yàn)?/span>

          設(shè),則等價(jià)于

          因?yàn)?/span>

          a=1,則.當(dāng)0<x<1時(shí),單調(diào)遞減;當(dāng)x>1時(shí),>0,單調(diào)遞增.所以x=1是的極小值點(diǎn),故

          綜上,a=1

          (2)由(1)知

          設(shè)

          當(dāng)時(shí),;當(dāng)時(shí),,所以單調(diào)遞減,在單調(diào)遞增

          ,所以有唯一零點(diǎn)x0,在有唯一零點(diǎn)1,且當(dāng)時(shí),;當(dāng)時(shí),,當(dāng)時(shí),.

          因?yàn)?/span>,所以x=x0是f(x)的唯一極大值點(diǎn)

          因?yàn)閤=x0是f(x)在(0,1)的最大值點(diǎn),由

          所以

          點(diǎn)睛:導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學(xué)中重要的知識(shí)點(diǎn),所以在歷屆高考中,對(duì)導(dǎo)數(shù)的應(yīng)用的考查都非常突出.導(dǎo)數(shù)專題在高考中的命題方向及命題角度從高考來(lái)看,對(duì)導(dǎo)數(shù)的應(yīng)用的考查主要從以下幾個(gè)角度進(jìn)行:(1)考查導(dǎo)數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系;(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性求參數(shù);(3)利用導(dǎo)數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問(wèn)題;(4)考查數(shù)形結(jié)合思想的應(yīng)用.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下列說(shuō)法中正確的是( )

          A. ”是“”成立的充分不必要條件

          B. 命題,則

          C. 為了了解800名學(xué)生對(duì)學(xué)校某項(xiàng)教改試驗(yàn)的意見(jiàn),用系統(tǒng)抽樣的方法從中抽取一個(gè)容量為40的樣本,則分組的組距為40

          D. 已知回歸直線的斜率的估計(jì)值為1.23,樣本點(diǎn)的中心為,則回歸直線方程為.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          (1)若函數(shù)上有2個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.(注

          (2)設(shè),若函數(shù)恰有兩個(gè)不同的極值點(diǎn),,證明:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某開發(fā)商用9000萬(wàn)元在市區(qū)購(gòu)買一塊土地建一幢寫字樓,規(guī)劃要求寫字樓每層建筑面積為2000平方米.已知該寫字樓第一層的建筑費(fèi)用為每平方米4000元,從第二層開始,每一層的建筑費(fèi)用比其下面一層每平方米增加100元.

          (1)若該寫字樓共x層,總開發(fā)費(fèi)用為y萬(wàn)元,求函數(shù)yf(x)的表達(dá)式;(總開發(fā)費(fèi)用=總建筑費(fèi)用+購(gòu)地費(fèi)用)

          (2)要使整幢寫字樓每平方米的平均開發(fā)費(fèi)用最低,該寫字樓應(yīng)建為多少層?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù).

          1)若在其定義域內(nèi)為單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;

          2)設(shè),且,若在上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍;

          3)求證:對(duì)任意的正整數(shù),都有成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】(本小題滿分12分)

          在如圖所示的多面體中,四邊形都為矩形。

          )若,證明:直線平面;

          )設(shè), 分別是線段, 的中點(diǎn),在線段上是否存在一點(diǎn),使直線平面?請(qǐng)證明你的結(jié)論。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓的左右焦點(diǎn)分別為,離心率為,是橢圓上的一個(gè)動(dòng)點(diǎn),且面積的最大值為.

          (1)求橢圓的方程;

          (2)設(shè)直線斜率為,且與橢圓的另一個(gè)交點(diǎn)為,是否存在點(diǎn),使得若存在,求的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在三棱錐中,都為等邊三角形,且側(cè)面與底面互相垂直,的中點(diǎn),點(diǎn)在線段上,且為棱上一點(diǎn).

          (1)試確定點(diǎn)的位置,使得平面;

          (2)在(1)的條件下,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某校有、四件作品參加航模類作品比賽.已知這四件作品中恰有兩件獲獎(jiǎng),在結(jié)果揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四件參賽作品的獲獎(jiǎng)情況預(yù)測(cè)如下.

          甲說(shuō):“、同時(shí)獲獎(jiǎng).”

          乙說(shuō):“不可能同時(shí)獲獎(jiǎng).”

          丙說(shuō):“獲獎(jiǎng).”

          丁說(shuō):“、至少一件獲獎(jiǎng)”

          如果以上四位同學(xué)中有且只有兩位同學(xué)的預(yù)測(cè)是正確的,則獲獎(jiǎng)的作品是( )

          A. 作品與作品B. 作品與作品C. 作品與作品D. 作品與作品

          查看答案和解析>>

          同步練習(xí)冊(cè)答案