已知點(diǎn)的坐標(biāo)分別是
、
,直線
相交于點(diǎn)
,且它們的斜率之積為
.
(1)求點(diǎn)軌跡
的方程;
(2)若過點(diǎn)的直線
與(1)中的軌跡
交于不同的兩點(diǎn)
,試求
面積的取值范圍(
為坐標(biāo)原點(diǎn)).
(1);(2)
.
解析試題分析:(1)直接由斜率公式可求解;(2)直線方程與圓錐曲線方程聯(lián)立方程組,利用弦長公式求出弦EF的長度,再由原點(diǎn)到直線EF的距離求出三角形高,求出三角形OEF面積的表達(dá)式,再利用基本不等式求最值.
試題解析:(1)設(shè)點(diǎn)的坐標(biāo)為
,∵
,∴
整理,得,這就是動點(diǎn)
的軌跡方程.
(2)由題意知直線的斜率存在,設(shè)
的方程為
①
將①代入得:
,由
,解得
設(shè),
,則
②
.
令,所以
.
所以
所以.
考點(diǎn):1、斜率公式;2、直線方程;3、橢圓方程及其性質(zhì);4、弦長公式;5、基本不等式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)拋物線的焦點(diǎn)為
,其準(zhǔn)線與
軸的交點(diǎn)為
,過
點(diǎn)的直線
交拋物線于
兩點(diǎn).
(1)若直線的斜率為
,求證:
;
(2)設(shè)直線的斜率分別為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓(
)右頂點(diǎn)與右焦點(diǎn)的距離為
,短軸長為
.
(I)求橢圓的方程;
(II)過左焦點(diǎn)的直線與橢圓分別交于
、
兩點(diǎn),若三角形
的面積為
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓經(jīng)過點(diǎn)
離心率
,直線
的方程為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)是經(jīng)過右焦點(diǎn)
的任一弦(不經(jīng)過點(diǎn)
),設(shè)直線
與直線
相交于點(diǎn)
,記
的斜率分別為
問:是否存在常數(shù)
,使得
若存在求
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:+
=1(a>b>0)的焦距為4,且與橢圓x2+
=1有相同的離心率,斜率為k的直線l經(jīng)過點(diǎn)M(0,1),與橢圓C交于不同的兩點(diǎn)A、B.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)橢圓C的右焦點(diǎn)F在以AB為直徑的圓內(nèi)時,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的長軸兩端點(diǎn)分別為
,
是橢圓上的動點(diǎn),以
為一邊在
軸下方作矩形
,使
,
交
于點(diǎn)
,
交
于點(diǎn)
.
(Ⅰ)如圖(1),若,且
為橢圓上頂點(diǎn)時,
的面積為12,點(diǎn)
到直線
的距離為
,求橢圓的方程;
(Ⅱ)如圖(2),若,試證明:
成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓的上、下頂點(diǎn)分別為
,點(diǎn)
在橢圓上,且異于點(diǎn)
,直線
與直線
分別交于點(diǎn)
,
(Ⅰ)設(shè)直線的斜率分別為
,求證:
為定值;
(Ⅱ)求線段的長的最小值;
(Ⅲ)當(dāng)點(diǎn)運(yùn)動時,以
為直徑的圓是否經(jīng)過某定點(diǎn)?請證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線C1的極坐標(biāo)方程為ρcos(θ-)=-1,曲線C2的極坐標(biāo)方程為ρ=2
cos(θ-
).以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系.
(Ⅰ)求曲線C2的直角坐標(biāo)方程;
(Ⅱ)求曲線C2上的動點(diǎn)M到曲線C1的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:
的離心率為
,左焦點(diǎn)為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線與曲線
交于不同的
、
兩點(diǎn),且線段
的中點(diǎn)
在圓
上,求
的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com