日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】對于定義域為的函數(shù),若同時滿足下列條件:

          內(nèi)單調(diào)遞增或單調(diào)遞減;

          ②存在區(qū)間,使上的值域為;

          那么把叫閉函數(shù).

          (1)求閉函數(shù)符合條件②的區(qū)間

          (2)判斷函數(shù)是否為閉函數(shù)?并說明理由;

          (3)是閉函數(shù),求實數(shù)的范圍.

          【答案】(1);(2)見解析;(3)

          【解析】

          (1)根據(jù)函數(shù)的單調(diào)性得到關于的方程組,解出即可;

          (2)將變形,得到的單調(diào)區(qū)間,根據(jù)閉函數(shù)的定義,判定即可得到答案;

          (3)根據(jù)閉函數(shù)的定義得到方程由兩個不等的實根,通過討論,得到關于的不等式組,即可求解.

          (1)由題意, 上遞減,則,解得

          所以,所求的區(qū)間為.

          (2) 上單調(diào)遞增,在上單調(diào)遞增,

          所以,函數(shù)在定義域上不單調(diào)遞增或單調(diào)遞減,從而該函數(shù)不是閉函數(shù)

          (3) 是閉函數(shù),則存在區(qū)間 ,在區(qū)間上,

          函數(shù)的值域為 ,

          所以為方程的兩個實數(shù)根,

          即方程有兩個不等的實根

          時,有,解得

          時,有,此不等式組無解.

          綜上所述, .

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù))。在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的極坐標方程為

          1)求直線的普通方程和圓的直角坐標方程;

          2)設圓與直線交于,兩點,若點的坐標為,求。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】四棱錐中,底面為矩形,,的中點.

          (1)證明:;

          (2),三棱錐的體積,求二面角DAEC的大小

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在寬為的路邊安裝路燈,燈柱高為,燈桿是半徑為的圓的一段劣。窡舨捎缅F形燈罩,燈罩頂到路面的距離為,到燈柱所在直線的距離為.設為燈罩軸線與路面的交點,圓心在線段上.

          (1)當為何值時,點恰好在路面中線上?

          (2)記圓心在路面上的射影為,且在線段上,求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)若方程f(x)=m有4個不同的實根x1,x2,x3,x4,且x1<x2<x3<x4,則()(x3+x4)=(  )

          A. 6 B. 7 C. 8 D. 9

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓的離心率為,橢圓經(jīng)過點.

          (1)求橢圓的標準方程;

          (2)設點是橢圓上的任意一點,射線與橢圓交于點,過點的直線與橢圓有且只有一個公共點,直線與橢圓交于,兩個相異點,證明:面積為定值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知平面平面ABC,PP在平面ABC的同側(cè),二面角的平面角為鈍角,Q到平面ABC的距離為,是邊長為2的正三角形,,.

          1)求證:面平面PAB;

          2)求二面角的平面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)

          (1)當時,求函數(shù)的極值;

          (2)設函數(shù)處的切線方程為,若函數(shù)上的單調(diào)增函數(shù),求的值;

          (3)是否存在一條直線與函數(shù)的圖象相切于兩個不同的點?并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓的左、右頂點分別為,,右焦點為,且上的動點的距離的最大值為4,最小值為2.

          1)證明:.

          2)若直線相交于,兩點(均不與,重合),且,試問是否經(jīng)過定點?若經(jīng)過,求出此定點坐標;若不經(jīng)過,請說明理由.

          查看答案和解析>>

          同步練習冊答案