日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù))

          (1)若,求函數(shù)的極值;

          (2)若是函數(shù)的一個(gè)極值點(diǎn),試求出關(guān)于的關(guān)系式(用表示),并確定的單調(diào)區(qū)間;

          (3)在(2)的條件下,設(shè),函數(shù).若存在使得成立,求的取值范圍.

          【答案】當(dāng)時(shí),函數(shù)有極大值,,

          當(dāng)時(shí),單調(diào)遞增區(qū)間為,遞減區(qū)間為

          當(dāng)時(shí),單調(diào)遞增區(qū)間為,遞減區(qū)間為

          【解析】

          解:(1……1

          當(dāng)時(shí), ---2

          ,解得---3

          當(dāng)時(shí),,當(dāng)時(shí),當(dāng)時(shí)

          (或列表)……4

          當(dāng)時(shí),函數(shù)有極大值,,

          當(dāng)時(shí),函數(shù)有極小值,.----------5

          2)由(1)知是函數(shù)的一個(gè)極值點(diǎn) ,解得------6

          K^S*5U.C#O%下標(biāo)

          ,得

          是極值點(diǎn),,即--------------------------7

          當(dāng)時(shí),由

          -----------8

          當(dāng)時(shí),由

          --------9

          綜上可知:當(dāng)時(shí),單調(diào)遞增區(qū)間為,遞減區(qū)間為

          當(dāng)時(shí),單調(diào)遞增區(qū)間為,遞減區(qū)間為----10

          3)由(2)知,當(dāng)a>0時(shí),在區(qū)間(0,1)上的單調(diào)遞減,在區(qū)間(1,4)上單調(diào)遞增,K^S*5U.C#O%下標(biāo)

          函數(shù)在區(qū)間上的最小值為 ,,函數(shù)在區(qū)間[0,4]上的值域是,即-------11分又在區(qū)間[0,4]上是增函數(shù),且它在區(qū)間[0,4]上的值域是----12存在使得成立只須僅須

          <1 .--14

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中, , 平面 .

          (1)設(shè)點(diǎn)的中點(diǎn),求證: 平面;

          (2)線段上是否存在一點(diǎn),使得直線與平面所成的角的正弦值為?若存在,試確定點(diǎn)的位置;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知?jiǎng)狱c(diǎn)M到定點(diǎn)的距離和它到直線的距離的比是常數(shù)

          1)求動(dòng)點(diǎn)M的軌跡方程;

          2)令(1)中方程表示曲線C,點(diǎn)S2,0),過點(diǎn)B1,0)的直線l與曲線C相交于PQ兩點(diǎn),求△PQS的面積的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4— 4:坐標(biāo)系與參數(shù)方程

          設(shè)極坐標(biāo)系與直角坐標(biāo)系有相同的長度單位,原點(diǎn)為極點(diǎn),軸正半軸為極軸,曲線的參數(shù)方程為是參數(shù)),直線的極坐標(biāo)方程為

          (Ⅰ)求曲線的普通方程和直線的參數(shù)方程;

          (Ⅱ)設(shè)點(diǎn),若直線與曲線相交于兩點(diǎn),且,求的值﹒

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,四棱錐PABCD中,平面PAD⊥平面ABCDPAPD,四邊形ABCD為等腰梯形,BCAD,BCCDAD1EPA的中點(diǎn).

          1)求證:EB∥平面PCD;

          2)求平面PAC與平面PCD所成角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】與正方體ABCD—A1B1C1D1的三條棱AB、CC1、A1D1所在直線的距離相等的點(diǎn)( )

          A.有且只有1個(gè)B.有且只有2個(gè)

          C.有且只有3個(gè)D.有無數(shù)個(gè)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】有甲、乙兩家公司都需要招聘求職者,這兩家公司的聘用信息如下:

          甲公司

          乙公司

          職位

          A

          B

          C

          D

          職位

          A

          B

          C

          D

          月薪/元

          6000

          7000

          8000

          9000

          月薪/元

          5000

          7000

          9000

          11000

          獲得相應(yīng)職位概率

          0.4

          0.3

          0.2

          0.1

          獲得相應(yīng)職位概率

          0.4

          0.3

          0.2

          0.1

          (1)根據(jù)以上信息,如果你是該求職者,你會(huì)選擇哪一家公司?說明理由;

          (2)某課外實(shí)習(xí)作業(yè)小組調(diào)查了1000名職場(chǎng)人士,就選擇這兩家公司的意愿做了統(tǒng)計(jì),得到以下數(shù)據(jù)分布:

          選擇意愿

          人員結(jié)構(gòu)

          40歲以上(含40歲)男性

          40歲以上(含40歲)女性

          40歲以下男性

          40歲以下女性

          選擇甲公司

          110

          120

          140

          80

          選擇乙公司

          150

          90

          200

          110

          若分析選擇意愿與年齡這兩個(gè)分類變量,計(jì)算得到的K2的觀測(cè)值為k15.5513,測(cè)得出選擇意愿與年齡有關(guān)系的結(jié)論犯錯(cuò)誤的概率的上限是多少?并用統(tǒng)計(jì)學(xué)知識(shí)分析,選擇意愿與年齡變量和性別變量哪一個(gè)關(guān)聯(lián)性更大?

          附:

          0.050

          0.025

          0.010

          0.005

          3.841

          5.024

          6.635

          7.879

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知三個(gè)村莊A,B,C構(gòu)成一個(gè)三角形,且AB=5千米,BC=12千米,AC=13千米.為了方便市民生活,現(xiàn)在ABC內(nèi)任取一點(diǎn)M建一大型生活超市,則MA,BC的距離都不小于2千米的概率為

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】給出四個(gè)命題:①若x23x+20,則x1x2;②若xy0,則x2+y20;③已知x,yN,若x+y是奇數(shù),則x、y中一個(gè)是奇數(shù),一個(gè)是偶數(shù);④若x1,x2是方程x22x+20的兩根,則x1,x2可以是一橢圓與一雙曲線的離心率,那么(  。

          A.③的否命題為假B.①的逆否命題為假

          C.②的逆命題為真D.④的逆否命題為假

          查看答案和解析>>

          同步練習(xí)冊(cè)答案