日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情
          在橢圓上有一點M,F1,F2是橢圓的兩個焦點,若,則橢圓離心率的范圍是( )
          A.
          B.
          C.
          D.
          【答案】分析:利用橢圓的定義,通過平方推出與的關系以及在△MF1F2中,由余弦定理,判斷三角形的形狀,然后求出橢圓的離心率.
          解答:解:由橢圓定義可知:|MF1|+|MF2|=2a,
          所以…①,
          在△MF1F2中,由余弦定理可知…②
          ,…③,
          由①②③可得:4c2=4a2-4b2-2|MF1|•|MF2|cosθ.
          所以|MF1|•|MF2|cosθ=0.
          所以c≥b,即c2≥b2=a2-c2,2c2≥a2,
          所以e∈
          故選B.
          點評:本題考查橢圓的離心率的求法,考查余弦定理的應用,橢圓的定義,考查計算能力.
          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          在橢圓
          x2
          4
          +
          y2
          3
          =1
          內有一點P(1,-1),F為橢圓右焦點,在橢圓上有一點M,使|MP|+2|MF|的值最小,則此最小值是( 。

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          在橢圓
          x2
          4
          +
          y2
          3
          =1內有一點P(1,-1),F為橢圓左焦點,在橢圓上有一點M,使|MP|+2|MF|的值最小,則這一最小值是( 。

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          在橢圓
          x2
          4
          +
          y2
          3
          =1
          內有一點P(1,-1),F為橢圓右焦點,在橢圓上有一點M,使|MP|+2|MF|的值最小,則M的坐標
          2
          6
          3
          ,-1)
          2
          6
          3
          ,-1)

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          橢圓+=1內有一點P(1,-1),F為右焦點,在橢圓上有一點M,使|MP|+2|MF|的值最小,則點M的坐標是(    )

          A.(,-1)                            B.(±,-1)

          C.(1,±)                              D.(1,-)

          查看答案和解析>>

          科目:高中數學 來源:2012年蘇教版高中數學選修1-1 2.2橢圓練習卷(解析版) 題型:選擇題

          在橢圓內有一點P(1,-1),F為橢圓右焦點,在橢圓上有一點M,使|MP|+2|MF|的值最小,則這一最小值是    (    )

          A.                 B.             C.3              D.4

           

          查看答案和解析>>

          同步練習冊答案