【題目】如圖所示,在三棱錐P–ABC中,PA⊥平面ABC,D是棱PB的中點(diǎn),已知PA=BC=2,AB=4,CB⊥AB,則異面直線PC,AD所成角的余弦值為
A.B.
C.
D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
Ⅰ
若
時,求函數(shù)
的單調(diào)區(qū)間;
Ⅱ
若
,則當(dāng)
時,記
的最小值為M,
的最大值為N,判斷M與N的大小關(guān)系,并寫出判斷過程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 :
(
)的離心率
,直線
被以橢圓
的短軸為直徑的圓截得的弦長為
.
(1)求橢圓 的方程;
(2)過點(diǎn) 的直線
交橢圓于
,
兩個不同的點(diǎn),且
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一列非零向量滿足:
,
,其中
是正數(shù)
(1)求數(shù)列的通項公式;
(2)求證:當(dāng)時,向量
與
的夾角為定值;
(3)當(dāng)時,把
中所有與
共線的向量按原來的順序排成一列,記為
,令
,
為坐標(biāo)原點(diǎn),求點(diǎn)列
的極限點(diǎn)
的坐標(biāo).(注:若點(diǎn)坐標(biāo)為
,且
,則稱點(diǎn)
為點(diǎn)列的極限點(diǎn))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一個同學(xué)家開了一個小賣部,他為了研究氣溫對熱飲飲料銷售的影響,經(jīng)過統(tǒng)計,得到一個賣出的熱飲杯數(shù)與當(dāng)天氣溫的散點(diǎn)圖和對比表:
攝氏溫度 | ||||||||
熱飲杯數(shù) |
(1)從散點(diǎn)圖可以發(fā)現(xiàn),各點(diǎn)散布在從左上角到右下角的區(qū)域里。因此,氣溫與當(dāng)天熱飲銷售杯數(shù)之間成負(fù)相關(guān),即氣溫越高,當(dāng)天賣出去的熱飲杯數(shù)越少。統(tǒng)計中常用相關(guān)系數(shù)來衡量兩個變量之間線性關(guān)系的強(qiáng)弱.統(tǒng)計學(xué)認(rèn)為,對于變量
、
,如果
,那么負(fù)相關(guān)很強(qiáng);如果
,那么正相關(guān)很強(qiáng);如果
,那么相關(guān)性一般;如果
,那么相關(guān)性較弱。請根據(jù)已知數(shù)據(jù),判斷氣溫與當(dāng)天熱飲銷售杯數(shù)相關(guān)性的強(qiáng)弱.
(2)(i)請根據(jù)已知數(shù)據(jù)求出氣溫與當(dāng)天熱飲銷售杯數(shù)的線性回歸方程;
(ii)記為不超過
的最大整數(shù),如
,
.對于(i)中求出的線性回歸方程
,將
視為氣溫與當(dāng)天熱飲銷售杯數(shù)的函數(shù)關(guān)系.已知?dú)鉁?/span>
與當(dāng)天熱飲每杯的銷售利潤
的關(guān)系是
(單位:元),請問當(dāng)氣溫
為多少時,當(dāng)天的熱飲銷售利潤總額最大?
(參考公式),
,
(參考數(shù)據(jù)),
,
.
,
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中藥種植基地有兩處種植區(qū)的藥材需在下周一、下周二兩天內(nèi)采摘完畢,基地員工一天可以完成一處種植區(qū)的采摘.由于下雨會影響藥材品質(zhì),基地收益如下表所示:
周一 | 無雨 | 無雨 | 有雨 | 有雨 |
周二 | 無雨 | 有雨 | 無雨 | 有雨 |
收益 |
|
|
|
|
若基地額外聘請工人,可在周一當(dāng)天完成全部采摘任務(wù).無雨時收益為萬元;有雨時,收益為
萬元.額外聘請工人的成本為
萬元.
已知下周一和下周二有雨的概率相同,兩天是否下雨互不影響,基地收益為萬元的概率為
.
(Ⅰ)若不額外聘請工人,寫出基地收益的分布列及基地的預(yù)期收益;
(Ⅱ)該基地是否應(yīng)該外聘工人,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若無窮數(shù)列滿足:
,當(dāng)
',
時,
(其中
表示
,
,…,
中的最大項),有以下結(jié)論:
① 若數(shù)列是常數(shù)列,則
;
② 若數(shù)列是公差
的等差數(shù)列,則
;
③ 若數(shù)列是公比為
的等比數(shù)列,則
:
④ 若存在正整數(shù),對任意
,都有
,則
,是數(shù)列
的最大項.
其中正確結(jié)論的序號是____(寫出所有正確結(jié)論的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在三棱錐P–ABC中,PA⊥平面ABC,D是棱PB的中點(diǎn),已知PA=BC=2,AB=4,CB⊥AB,則異面直線PC,AD所成角的余弦值為
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了診斷高三學(xué)生在市“一模”考試中文科數(shù)學(xué)備考的狀況,隨機(jī)抽取了50名學(xué)生的市“一模”數(shù)學(xué)成績進(jìn)行分析,將這些成績分為九組,第一組[60,70),第二組[70,80),……,第九組[140,150],并繪制了如圖所示的頻率分布直方圖.
(1)試求出的值并估計該校文科數(shù)學(xué)成績的眾數(shù)和中位數(shù);
(2)現(xiàn)從成績在[120,150]的同學(xué)中隨機(jī)抽取2人進(jìn)行談話,那么抽取的2人中恰好有一人的成績在[130,140)中的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com