【題目】有一個同學(xué)家開了一個小賣部,他為了研究氣溫對熱飲飲料銷售的影響,經(jīng)過統(tǒng)計,得到一個賣出的熱飲杯數(shù)與當(dāng)天氣溫的散點圖和對比表:
攝氏溫度 | ||||||||
熱飲杯數(shù) |
(1)從散點圖可以發(fā)現(xiàn),各點散布在從左上角到右下角的區(qū)域里。因此,氣溫與當(dāng)天熱飲銷售杯數(shù)之間成負(fù)相關(guān),即氣溫越高,當(dāng)天賣出去的熱飲杯數(shù)越少。統(tǒng)計中常用相關(guān)系數(shù)來衡量兩個變量之間線性關(guān)系的強(qiáng)弱.統(tǒng)計學(xué)認(rèn)為,對于變量
、
,如果
,那么負(fù)相關(guān)很強(qiáng);如果
,那么正相關(guān)很強(qiáng);如果
,那么相關(guān)性一般;如果
,那么相關(guān)性較弱。請根據(jù)已知數(shù)據(jù),判斷氣溫與當(dāng)天熱飲銷售杯數(shù)相關(guān)性的強(qiáng)弱.
(2)(i)請根據(jù)已知數(shù)據(jù)求出氣溫與當(dāng)天熱飲銷售杯數(shù)的線性回歸方程;
(ii)記為不超過
的最大整數(shù),如
,
.對于(i)中求出的線性回歸方程
,將
視為氣溫與當(dāng)天熱飲銷售杯數(shù)的函數(shù)關(guān)系.已知氣溫
與當(dāng)天熱飲每杯的銷售利潤
的關(guān)系是
(單位:元),請問當(dāng)氣溫
為多少時,當(dāng)天的熱飲銷售利潤總額最大?
(參考公式),
,
(參考數(shù)據(jù)),
,
.
,
,
,
.
【答案】(1)見解析;(2) (i)(ii)
時,當(dāng)天的熱飲銷售利潤總額最大,且最大為
元
【解析】
(1)由已知數(shù)據(jù),求出相關(guān)系數(shù),可得到結(jié)論.
(2)(i)將參考數(shù)據(jù)代入?yún)⒖脊街校蟪龌貧w系數(shù)和
,寫出回歸方程;
(ii)將利潤總額的關(guān)系式列出,利用
的意義將
寫成分段函數(shù),利用函數(shù)單調(diào)性求最大值.
(1)因為
.
所以氣溫與當(dāng)天熱飲銷售杯數(shù)的負(fù)相關(guān)很強(qiáng).
(2)(i)因為
,
.
所以氣溫與當(dāng)天熱飲銷售杯數(shù)的線性回歸方程為.
(ii)由題意可知氣溫與當(dāng)天熱飲銷售杯數(shù)
的關(guān)系為
.
設(shè)氣溫為時,則當(dāng)天銷售的熱飲利潤總額為
,
即.
易知,
,
.
故當(dāng)氣溫時,當(dāng)天的熱飲銷售利潤總額最大,且最大為
元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面上的三點 、
、
.
(1)求以 、
為焦點且過點
的橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點 、
、
關(guān)于直線
的對稱點分別為
、
、
,求以
、
為焦點且過點
的雙曲線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為實數(shù),函數(shù)
.
(1)求的極值;
(2)當(dāng)在什么范圍內(nèi)取值時,曲線
與
軸僅有一個交點?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列有關(guān)光線的入射與反射的兩個事實現(xiàn)象:現(xiàn)象(1):光線經(jīng)平面鏡反射滿足入射角與反射角相等(如圖);現(xiàn)象(2);光線從橢圓的一個焦點出發(fā)經(jīng)橢圓反射后通過另一個焦點(如圖).試結(jié)合,上述事實現(xiàn)象完成下列問題:
(Ⅰ)有一橢圓型臺球桌,長軸長為2a,短軸長為2b.將一放置于焦點處的桌球擊出.經(jīng)過球桌邊緣的反射(假設(shè)球的反射充全符合現(xiàn)象(2)),后第一次返回到該焦點時所經(jīng)過的路程記為S,求S的值(用a,b表示);
(Ⅱ)結(jié)論:橢圓上任點P(x0,y0)處的切線的方程為
.記橢圓C的方程為C:
,在直線x=4上任一點M向橢圓C引切線,切點分別為A,B.求證:直線lAB恒過定點:
(Ⅲ)過點T(1,0)的直線l(直線l斜率不為0)與橢圓C:交于P、Q兩點,是否存在定點S(s,0),使得直線SP與SQ斜率之積為定值,若存在求出S坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列判斷正確的是( )
A. “”是“
”的充分不必要條件
B. 命題“若,則
”的否命題為“若
,則
”
C. 命題“,
”的否定是“
,
”
D. 若命題“”為假命題,則命題
,
都是假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在三棱錐P–ABC中,PA⊥平面ABC,D是棱PB的中點,已知PA=BC=2,AB=4,CB⊥AB,則異面直線PC,AD所成角的余弦值為
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為征求個人所得稅法修改建議,某機(jī)構(gòu)對當(dāng)?shù)鼐用竦脑率杖胝{(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(每個分組包括左端點,不包括右端點,如第一組表示收入在[1000,1500)).
(1)求居民月收入在的頻率;
(2)根據(jù)頻率分布直方圖估算樣本數(shù)據(jù)的中位數(shù);
(3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這10000人中用分層抽樣方法抽出100人作進(jìn)一步分析,則月收入在的這段應(yīng)抽多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前
項和為
,
.
(1)若,求證:
,
,
必可以被分為1組或2組,使得每組所有數(shù)的和小于1;
(2)若,求證:
,
…,
,必可以被分為
組
,使得每組所有數(shù)的和小于1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x-a|+|2x-1|(a∈R).
(1)當(dāng)a=-1時,求f(x)≤2的解集;
(2)若f(x)≤|2x+1|的解集包含集合,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com