【題目】如圖,在四棱錐中,底面
是菱形,對(duì)角線(xiàn)
,
交于點(diǎn)
.
(Ⅰ)若,求證:
平面
;
(Ⅱ)若平面平面
,求證:
;
(Ⅲ)在棱上是否存在點(diǎn)
(異于點(diǎn)
),使得
平面
?說(shuō)明理由.
【答案】(Ⅰ)詳見(jiàn)解析;(Ⅱ)詳見(jiàn)解析;(Ⅲ)不存在,理由詳見(jiàn)解析.
【解析】
(Ⅰ)根據(jù)菱形的對(duì)角線(xiàn)互相垂直,再結(jié)合已知垂直條件,利用線(xiàn)面垂直的判定定理可以證明出平面
;
(Ⅱ)由面面垂直的性質(zhì)定理和菱形的對(duì)角線(xiàn)互相垂直,可以得到,再根據(jù)菱形對(duì)角線(xiàn)互相平分,這樣可以證明出
;
(Ⅲ)假設(shè)存在,根據(jù)菱形的性質(zhì)和已知的平行條件, 可以得到平面平面
,顯然不可能,故假設(shè)存在不成立,故不存在,命題得證.
(Ⅰ)證明:因?yàn)榈酌?/span>是菱形,
所以.因?yàn)?/span>
,
,
平面
,
所以平面
.
(Ⅱ)證明:連接.
由(Ⅰ)可知.
因?yàn)槠矫?/span>平面
,
所以平面
.
因?yàn)?/span>平面
,
所以.
因?yàn)榈酌?/span>是菱形,
所以.
所以.
(Ⅲ)解:不存在,證明如下.
假設(shè)存在點(diǎn)(異于點(diǎn)
),使得
平面
.
因?yàn)榱庑?/span>中,
,且
平面
,
所以平面
.
又因?yàn)?/span>平面
,所以平面
平面
.
這顯然矛盾!
從而,棱上不存在點(diǎn)
,使得
平面
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校學(xué)生參加了“鉛球”和“立定跳遠(yuǎn)”兩個(gè)科目的體能測(cè)試,每個(gè)科目的成績(jī)分為,
,
,
,
五個(gè)等級(jí),分別對(duì)應(yīng)5分,4分,3分,2分,1分,該校某班學(xué)生兩科目測(cè)試成績(jī)的數(shù)據(jù)統(tǒng)計(jì)如圖所示,其中“鉛球”科目的成績(jī)?yōu)?/span>
的學(xué)生有8人.
(Ⅰ)求該班學(xué)生中“立定跳遠(yuǎn)”科目中成績(jī)?yōu)?/span>的人數(shù);
(Ⅱ)若該班共有10人的兩科成績(jī)得分之和大于7分,其中有2人10分,3人9分,5人8分.從這10人中隨機(jī)抽取兩人,求兩人成績(jī)之和的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在xOy平面上,將雙曲線(xiàn)的一支
及其漸近線(xiàn)
和直線(xiàn)
、
圍成的封閉圖形記為D,如圖中陰影部分,記D繞y軸旋轉(zhuǎn)一周所得的幾何體為
,過(guò)
作
的水平截面,計(jì)算截面面積,利用祖暅原理得出
體積為________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果對(duì)于函數(shù)f(x)定義域內(nèi)任意的兩個(gè)自變量的值x1 , x2 , 當(dāng)x1<x2時(shí),都有f(x1)≤f(x2),且存在兩個(gè)不相等的自變量值y1 , y2 , 使得f(y1)=f(y2),就稱(chēng)f(x)為定義域上的不嚴(yán)格的增函數(shù).
則 ① , ②
,
③ , ④
,
四個(gè)函數(shù)中為不嚴(yán)格增函數(shù)的是 ,若已知函數(shù)g(x)的定義域、值域分別為A、B,A={1,2,3},BA,且g(x)為定義域A上的不嚴(yán)格的增函數(shù),那么這樣的g(x)有 個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)試求f(x)的單調(diào)區(qū)間;
(2)求證:不等式對(duì)于x∈(1,2)恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象與直線(xiàn)y=x無(wú)交點(diǎn),現(xiàn)有下列結(jié)論:
①若a=1,b=2,則c>
②若a+b+c=0,則不等式f(x)>x對(duì)一切實(shí)數(shù)x都成立
③函數(shù)g(x)=ax2﹣bx+c的圖象與直線(xiàn)y=﹣x也一定沒(méi)有交點(diǎn)
④若a>0,則不等式f[f(x)]>x對(duì)一切實(shí)數(shù)x都成立
⑤方程f[f(x)]=x一定沒(méi)有實(shí)數(shù)根
其中正確的結(jié)論是 (寫(xiě)出所有正確結(jié)論的編號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種商品原來(lái)每件售價(jià)為25元,年銷(xiāo)售量8萬(wàn)件.
(1)據(jù)市場(chǎng)調(diào)查,若價(jià)格每提高1元,銷(xiāo)售量將相應(yīng)減少2000件,要使銷(xiāo)售的總收入不低于原收入,該商品每件定價(jià)最多為多少元?
(2)為了擴(kuò)大該商品的影響力,提高年銷(xiāo)售量.公司決定明年對(duì)該商品進(jìn)行全面技術(shù)革新和營(yíng)銷(xiāo)策略改革,并提高定價(jià)到元.公司擬投入
萬(wàn)元作為技改費(fèi)用,投入50萬(wàn)元作為固定宣傳費(fèi)用,投入
萬(wàn)元作為浮動(dòng)宣傳費(fèi)用.試問(wèn):當(dāng)該商品明年的銷(xiāo)售量a至少應(yīng)達(dá)到多少萬(wàn)件時(shí),才可能使明年的銷(xiāo)售收入不低于原收入與總投入之和?并求出此時(shí)商品的每件定價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P1(a1 , b1),P2(a2 , b2),…,Pn(an , bn)(n∈N*)都在函數(shù)y=的圖象上.
(Ⅰ)若數(shù)列{bn}是等差數(shù)列,求證數(shù)列{an}為等比數(shù)列;
(Ⅱ)若數(shù)列{an}的前n項(xiàng)和為Sn=1﹣2﹣n , 過(guò)點(diǎn)Pn , Pn+1的直線(xiàn)與兩坐標(biāo)軸所圍成三角形面積為cn , 求使cn≤t對(duì)n∈N*恒成立的實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在處有一港口,兩艘海輪
同時(shí)從港口
處出發(fā)向正北方向勻速航行,海輪
的航行速度為20海里/小時(shí),海輪
的航行速度大于海輪
.在港口
北偏東60°方向上的
處有一觀(guān)測(cè)站,1小時(shí)后在
處測(cè)得與海輪
的距離為30海里,且
處對(duì)兩艘海輪
,
的視角為30°.
(1)求觀(guān)測(cè)站到港口
的距離;
(2)求海輪的航行速度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com