日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=2a4x﹣2x﹣1.
          (1)當(dāng)a=1時(shí),求函數(shù)f(x)的零點(diǎn);
          (2)若f(x)有零點(diǎn),求a的取值范圍.

          【答案】
          (1)解:當(dāng)a=1時(shí),f(x)=24x﹣2x﹣1.

          令f(x)=0,即2(2x2﹣2x﹣1=0,

          解得2x=1或 (舍去).

          ∴x=0,函數(shù)f(x)的零點(diǎn)為x=0


          (2)解:若f(x)有零點(diǎn),則方程2a4x﹣2x﹣1=0有解,

          于是2a= = = ,

          >0,2a =0,即a>0


          【解析】(1)問題轉(zhuǎn)化為a=1時(shí)解方程f(x)=0;(2)f(x)有零點(diǎn),則方程2a4x﹣2x﹣1=0有解,分離出a后轉(zhuǎn)化為求函數(shù)的值域問題;
          【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)的零點(diǎn)與方程根的關(guān)系(二次函數(shù)的零點(diǎn):(1)△>0,方程 有兩不等實(shí)根,二次函數(shù)的圖象與 軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn);(2)△=0,方程 有兩相等實(shí)根(二重根),二次函數(shù)的圖象與 軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn);(3)△<0,方程 無實(shí)根,二次函數(shù)的圖象與 軸無交點(diǎn),二次函數(shù)無零點(diǎn)),還要掌握函數(shù)的零點(diǎn)(函數(shù)的零點(diǎn)就是方程的實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo).即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn))的相關(guān)知識(shí)才是答題的關(guān)鍵.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-5:不等式選講

          已知函數(shù)

          1)求不等式的解集;

          2)若,求證: .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】比較下列各題中兩個(gè)數(shù)的大小:
          (1)log60.8,log69.1;
          (2)log0.17,log0.19;
          (3)log0.15,log2.35
          (4)loga4,loga6(a>0,且a≠1)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】定義在R上的函數(shù)f(x),滿足當(dāng)x>0時(shí),f(x)>1,且對(duì)任意的x,y∈R,有f(x+y)=f(x)f(y),f(1)=2.
          (1)求f(0)的值;
          (2)求證:對(duì)任意x∈R,都有f(x)>0;
          (3)解不等式f(3﹣2x)>4.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在正三角形中, 分別是邊上的點(diǎn),滿足 (如圖),將沿折起到的位置,使二面角成直二面角,連接 (如圖).

          (1) 求證: 平面;

          (2)求二面角的余弦值的大;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=
          (1)判斷并證明f(x)的奇偶性;
          (2)求不等式 ≤f(x) 的解集.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)橢圓的左頂點(diǎn)為,且橢圓與直線相切,

          (1)求橢圓的標(biāo)準(zhǔn)方程;

          (2)過點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn),設(shè)為坐標(biāo)原點(diǎn),是否存在常數(shù),使得?請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖, 是正方形, 平面, , .

          (1)求證: 平面;

          (2)求證: 平面

          (3)求四面體的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)為定義在R奇函數(shù),當(dāng)x>0時(shí),f(x)=﹣2x2+4x+1,
          (1)求:當(dāng)x<0時(shí),f(x)的表達(dá)式;
          (2)用分段函數(shù)寫出f(x)的表達(dá)式;
          (3)若函數(shù)h(x)=f(x)﹣a恰有三個(gè)零點(diǎn),求a的取值范圍(只要求寫出結(jié)果).

          查看答案和解析>>