【題目】已知拋物線:
(
)與橢圓
:
相交所得的弦長(zhǎng)為
.
(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè),
是
上異于原點(diǎn)
的兩個(gè)不同點(diǎn),直線
和
的傾斜角分別為
和
,當(dāng)
,
變化且
為定值
(
)時(shí),證明:直線
恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
【答案】(Ⅰ);(Ⅱ)直線
恒過(guò)定點(diǎn)
.
【解析】
試題分析:(Ⅰ)設(shè)拋物線與橢圓
交于
,
兩點(diǎn),由對(duì)稱性得
,代入
得
的值;(Ⅱ)欲求證直線
恒過(guò)定點(diǎn),可先根據(jù)條件求出帶參數(shù)
的直線
的方程,再結(jié)合
為定值即可證得.
試題解析:(Ⅰ)設(shè)拋物線與橢圓
交于
,
兩點(diǎn).
由橢圓的對(duì)稱性可知,,
,
將點(diǎn)代入拋物線
中,得
,
再將點(diǎn)代入橢圓
中,得
,解得
.
故拋物線的標(biāo)準(zhǔn)方程為
.
(Ⅱ)設(shè)點(diǎn),
,
由題意得(否則
,不滿足
),且
,
,
設(shè)直線,
的方程分別為
,
,
聯(lián)立,解得
,
,聯(lián)立
,解得
,
;
則由兩點(diǎn)式得,直線的方程為
.
化簡(jiǎn)得.①
因?yàn)?/span>,由
,得
,得
,②
將②代入①,化簡(jiǎn)得,得
.
得,
得,
得,
即.
令,不管
取何值,都有
.
所以直線恒過(guò)定點(diǎn)
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=,其中0<a<1,k∈R。
(Ⅰ)若k=1,求函數(shù)f(x)的定義域;
(Ⅱ)若a=,且f(x)在[1,+∞)內(nèi)總有意義,求k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),數(shù)列
滿足
,
(
,
).
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),若
對(duì)
恒成立,求實(shí)數(shù)
的取值范圍;
(3)是否存在以為首項(xiàng),公比為
(
,
)的數(shù)列
,
使得數(shù)列
的每一項(xiàng)都是數(shù)列
的不同的項(xiàng),若存在,求出所有滿足條件的數(shù)列
的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)圓的圓心在
軸上,并且過(guò)
兩點(diǎn).
(1)求圓的方程;
(2)設(shè)直線與圓
交于
兩點(diǎn),那么以
為直徑的圓能否經(jīng)過(guò)原點(diǎn),若能,請(qǐng)求出直線
的方程;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線:
(
)與橢圓
:
相交所得的弦長(zhǎng)為
(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè),
是
上異于原點(diǎn)
的兩個(gè)不同點(diǎn),直線
和
的傾斜角分別為
和
,當(dāng)
,
變化且
為定值
(
)時(shí),證明:直線
恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,底面是邊長(zhǎng)為1的正方形,側(cè)棱PD=1,PA=PC=.
(1)求證:PD⊥平面ABCD;
(2)求證:平面PAC⊥平面PBD;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(請(qǐng)選做其中一題)
(1)請(qǐng)推導(dǎo)等差數(shù)列及等比數(shù)列前項(xiàng)和公式;
(2)如果你在海上航行,請(qǐng)?jiān)O(shè)計(jì)一種測(cè)量海上兩個(gè)小島之間距離的方法并作圖說(shuō)明;
(3)某工廠要建造一個(gè)長(zhǎng)方形無(wú)蓋貯水池,其容積為4800立方米,深為3米,如果池底每平米的造價(jià)為150元,池壁每平米造價(jià)為120元,怎樣設(shè)計(jì)水池能使造價(jià)最低?最低總造價(jià)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),函數(shù)
與
的圖象有三個(gè)不同的交點(diǎn),求實(shí)數(shù)
的范圍;
(2)討論的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一顆質(zhì)地均勻的正方體骰子(六個(gè)面的點(diǎn)數(shù)分別為1,2,3,4,5,6)先后拋擲兩次,記第一次出現(xiàn)的點(diǎn)數(shù)為,第二次出現(xiàn)的點(diǎn)數(shù)為
.
(1)求事件“”的概率;
(2)求事件“”的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com