日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分14分)
          在長方體ABCD—A1B1C1D1,中,AD=AA1=1,AB=2,點E在棱AB上移動.
          (1)證明:D1E⊥A1D;
          (2)當E為AB的中點時,求三棱錐E-ACD1的體積;
          (3)AE等于何值時,二面角D1—EC—D的大小為.

          (1)  略
          (2)  
          (3)  
          解法(一)
          (1)證明:∵AE⊥平面AA1DD1,A1D⊥AD1,∴A1D⊥D1E
          (2)(2)
          (3)過D作DH⊥CE于H,連D1H、DE,則D1H⊥CE,
          ∴∠DHD1為二面角D1—EC—D的平面角.
          設(shè)AE=x,則BE=2-x


          解法(二):以D為坐標原點,直線DA,DC,DD1分別為x,y,z軸,建立空間直角坐標系,設(shè)AE=x,則A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0)C(0,2,0)
          (1)
          (3)設(shè)平面D1EC的法向量,∴
           令b="1," ∴c=2,a=2-x

          依題意
          (不合,舍去), .
          ∴AE=時,二面角D1—EC—D的大小為.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源:不詳 題型:解答題

          (本小題滿分14分)
          如圖, 在四棱錐中,頂點在底面上的射影恰好落在的中點上,又∠,,且
          =1:2:2.

          (1) 求證:  
          (2) 若, 求直線所成的角的余弦值;
          (3) 若平面與平面所成的角為, 求的值

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          (滿分12分)
          已知正方體ABCD—A1B1C1D1,其棱長為2,O是底ABCD對角線的交點。

          求證:
          (1)C1O∥面AB1D1;
          (2)A1C⊥面AB1D1。 
          (3)若M是CC1的中點,求證:平面AB1D1⊥平面MB1D1

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          如圖,在棱長都相等的正三棱柱中,分別為,的中點.
          ⑴求證:
          ⑵求證:.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          (本題14分).在四棱錐中,底面是矩形,平面,,.以的中點為球心、為直徑的球面交于點,交于點
          (1)求直線與平面所成的角的正弦值;
          (2)求點到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          (12分)如圖所示,在直三棱柱ABC-A1B1C1中,AB=BB1,AC1⊥平面A1BD,D為AC的中點。
          (1)求證:B1C1⊥平面ABB1A1;
          (2)在CC1上是否存在一點E,使得∠BA1E=45°,若存在,試確定E的位置,并判斷平面A1BD與平面BDE是否垂直?若不存在,請說明理由。

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          (本小題滿分12分)如圖,已知四棱柱ABCD—A1B1C1D1中,A1D⊥底面ABCD,底面ABCD是邊長為1的正方形,側(cè)棱AA1=2。
          (I)求證:C1D//平面ABB1A1;
          (II)求直線BD1與平面A1C1D所成角的正弦值;
          (Ⅲ)求二面角D—A1C1—A的余弦值。

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          (9分)如圖,在四棱錐PABCD中,底面ABCD為矩形,側(cè)棱PA⊥底面ABCD,AB=,BC=1,PA=2,EPD的中點.
          (1)求直線BE與平面ABCD所成角的正切值;
          (2)在側(cè)面PAB內(nèi)找一點N,使NE⊥面PAC
          并求出N點到ABAP的距離.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          選修4-1:幾何證明選講
          如圖,已知是⊙的切線, 為切點,是⊙O的割線,與⊙交于, 兩點,圓心的內(nèi)部,點的中點.
          (1)求證:,四點共圓;
          (2)求的大小.

          查看答案和解析>>

          同步練習冊答案