【題目】已知橢圓,離心率為
,直線
恒過(guò)
的一個(gè)焦點(diǎn)
.
(1)求的標(biāo)準(zhǔn)方程;
(2)設(shè)為坐標(biāo)原點(diǎn),四邊形
的頂點(diǎn)均在
上,
交于
,且
,若直線
的傾斜角的余弦值為
,求直線
與
軸交點(diǎn)的坐標(biāo).
【答案】(1)(2)
【解析】
(1)將轉(zhuǎn)化成直線點(diǎn)斜式方程形式,求出所過(guò)的恒點(diǎn),進(jìn)而知道橢圓的焦點(diǎn),再根據(jù)橢圓的離心率公式進(jìn)行求解即可.
(2)根據(jù)向量等式,可以確定分別是
的中點(diǎn).設(shè)
,求出直線
的方程,與橢圓方程聯(lián)立,消元,利用一元二次方程根與系數(shù)關(guān)系,求出
的坐標(biāo),同理求出
點(diǎn)坐標(biāo),求出直線
的方程,最后求出直線
與
軸交點(diǎn)的坐標(biāo).
(1)設(shè)橢圓的半焦距為,
可化為
,所以直線
恒過(guò)點(diǎn)
,所以點(diǎn)
,可得
.因?yàn)殡x心率為
,所以
,解得
,由
得
,所以
的標(biāo)準(zhǔn)方程為
.
(2)因?yàn)?/span>,所以
.由
得
分別是
的中點(diǎn).設(shè)
.由直線
的傾斜角的余弦值為
,得直線
的斜率為2,所以
,聯(lián)立
消去
,得
.顯然,
,且
,
,所以
,可得
,同理可得
,所以
,所以
.令
,得
,所以直線
與
軸交點(diǎn)的坐標(biāo)為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某次考試后,對(duì)全班同學(xué)的數(shù)學(xué)成績(jī)進(jìn)行整理,得到表:
分?jǐn)?shù)段 | ||||
人數(shù) | 5 | 15 | 20 | 10 |
將以上數(shù)據(jù)繪制成頻率分布直方圖后,可估計(jì)出本次考試成績(jī)的中位數(shù)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱錐的四個(gè)頂點(diǎn)在球
的球面上,
,
是邊長(zhǎng)為
正三角形,
分別是
的中點(diǎn),
,則球
的體積為_________________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分13分)如圖,在直角坐標(biāo)系中,角
的頂點(diǎn)是原點(diǎn),始邊與
軸正半軸重合.終邊交單位圓于點(diǎn)
,且
,將角
的終邊按逆時(shí)針?lè)较蛐D(zhuǎn)
,交單位圓于點(diǎn)
,記
.
(1)若,求
;
(2)分別過(guò)作
軸的垂線,垂足依次為
,記
的面積為
,
的面積為
,若
,求角
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過(guò)的包裹收費(fèi)
元;重量超過(guò)
的包裹,除
收費(fèi)
元之外,超過(guò)
的部分,每超出
(不足
,按
計(jì)算)需再收
元.該公司將最近承攬的
件包裹的重量統(tǒng)計(jì)如下:
包裹重量(單位: | |||||
包裹件數(shù) |
公司對(duì)近天,每天攬件數(shù)量統(tǒng)計(jì)如下表:
包裹件數(shù)范圍 | |||||
包裹件數(shù) (近似處理) | |||||
天數(shù) |
以上數(shù)據(jù)已做近似處理,并將頻率視為概率.
(1)計(jì)算該公司未來(lái)天內(nèi)恰有
天攬件數(shù)在
之間的概率;
(2)(i)估計(jì)該公司對(duì)每件包裹收取的快遞費(fèi)的平均值;
(ii)公司將快遞費(fèi)的三分之一作為前臺(tái)工作人員的工資和公司利潤(rùn),剩余的用作其他費(fèi)用.目前前臺(tái)有工作人員人,每人每天攬件不超過(guò)
件,工資
元.公司正在考慮是否將前臺(tái)工作人員裁減
人,試計(jì)算裁員前后公司每日利潤(rùn)的數(shù)學(xué)期望,并判斷裁員是否對(duì)提高公司利潤(rùn)更有利?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于定義在上的函數(shù)
,若函數(shù)
滿足:①在區(qū)間
上單調(diào)遞減;②存在常數(shù)p,使其值域?yàn)?/span>
,則稱函數(shù)
為
的“漸近函數(shù)”;
(1)證明:函數(shù)是函數(shù)
的漸近函數(shù),并求此時(shí)實(shí)數(shù)p的值;
(2)若函數(shù),證明:當(dāng)
時(shí),
不是
的漸近函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(1)求函數(shù)a的取值范圍;
(2)記函數(shù)的兩個(gè)極值點(diǎn)為
,
,且
,證明對(duì)任意實(shí)數(shù)
,都有不等式
成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)且
)曲線
的參數(shù)方程為
(
為參數(shù),且
),以
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為:
,曲線
的極坐標(biāo)方程為
.
(1)求與
的交點(diǎn)到極點(diǎn)的距離;
(2)設(shè)與
交于
點(diǎn),
與
交于
點(diǎn),當(dāng)
在
上變化時(shí),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)打算處理一批產(chǎn)品,這些產(chǎn)品每箱100件,以箱為單位銷售.已知這批產(chǎn)品中每箱出現(xiàn)的廢品率只有或者
兩種可能,兩種可能對(duì)應(yīng)的概率均為0.5.假設(shè)該產(chǎn)品正品每件市場(chǎng)價(jià)格為100元,廢品不值錢.現(xiàn)處理價(jià)格為每箱8400元,遇到廢品不予更換.以一箱產(chǎn)品中正品的價(jià)格期望值作為決策依據(jù).
(1)在不開(kāi)箱檢驗(yàn)的情況下,判斷是否可以購(gòu)買;
(2)現(xiàn)允許開(kāi)箱,有放回地隨機(jī)從一箱中抽取2件產(chǎn)品進(jìn)行檢驗(yàn).
①若此箱出現(xiàn)的廢品率為,記抽到的廢品數(shù)為
,求
的分布列和數(shù)學(xué)期望;
②若已發(fā)現(xiàn)在抽取檢驗(yàn)的2件產(chǎn)品中,其中恰有一件是廢品,判斷是否可以購(gòu)買.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com