日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】對于定義在上的函數(shù),若函數(shù)滿足:①在區(qū)間上單調(diào)遞減;②存在常數(shù)p,使其值域?yàn)?/span>,則稱函數(shù)漸近函數(shù);

          1)證明:函數(shù)是函數(shù)的漸近函數(shù),并求此時(shí)實(shí)數(shù)p的值;

          2)若函數(shù),證明:當(dāng)時(shí),不是的漸近函數(shù).

          【答案】1)證明見解析,;(2)證明見解析;

          【解析】

          1)通過令,利用漸近函數(shù)的定義逐條驗(yàn)證即可;(2)通過記,結(jié)合漸近函數(shù)的定義可知,問題轉(zhuǎn)化為求時(shí),的最大值問題,進(jìn)而計(jì)算可得的范圍,從而證明結(jié)論.

          1)根據(jù)題意,令,

          ,

          所以,

          所以在區(qū)間上單調(diào)遞減,且,

          所以,

          于是函數(shù)是函數(shù)的漸近函數(shù),

          此時(shí)實(shí)數(shù).

          2)即

          ,

          假設(shè)函數(shù)的漸近函數(shù)是,

          則當(dāng)時(shí),,即,

          令函數(shù),

          ,

          當(dāng)時(shí),,

          當(dāng)時(shí),,在區(qū)間上單調(diào)遞增,

          所以,

          所以,

          所以當(dāng)時(shí),不是的漸近函數(shù).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖放置的邊長為1的正方形 沿 軸滾動(dòng)(向右為順時(shí)針,向左為逆時(shí)針).設(shè)頂點(diǎn) 的軌跡方程是,則關(guān)于的最小正周期在其兩個(gè)相鄰零點(diǎn)間的圖像與x軸所圍區(qū)域的面積S的正確結(jié)論是( )

          A. B.

          C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】一款擊鼓小游戲的規(guī)則如下:每盤游戲都需要擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)一次音樂獲得10分,出現(xiàn)兩次音樂獲得20分,出現(xiàn)三次音樂獲得100分,沒有出現(xiàn)音樂則扣除200分(即獲得分).設(shè)每次擊鼓出現(xiàn)音樂的概率為,且各次擊鼓出現(xiàn)音樂相互獨(dú)立.

          1)設(shè)每盤游戲獲得的分?jǐn)?shù)為,求的分布列;

          2)玩三盤游戲,至少有一盤出現(xiàn)音樂的概率是多少?

          3)玩過這款游戲的許多人都發(fā)現(xiàn),若干盤游戲后,與最初的分?jǐn)?shù)相比,分?jǐn)?shù)沒有增加反而減少了.請運(yùn)用概率統(tǒng)計(jì)的相關(guān)知識分析分?jǐn)?shù)減少的原因.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)當(dāng)時(shí),求的極值;

          2)當(dāng)函數(shù)有兩個(gè)極值點(diǎn),總有成立,求整數(shù)t的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓,離心率為,直線恒過的一個(gè)焦點(diǎn).

          1)求的標(biāo)準(zhǔn)方程;

          2)設(shè)為坐標(biāo)原點(diǎn),四邊形的頂點(diǎn)均在上,交于,且,若直線的傾斜角的余弦值為,求直線軸交點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知?jiǎng)訄A過定點(diǎn),且在y軸上截得的弦MN的長為8

          1)求動(dòng)圓圓心的軌跡C的方程;

          2)已知點(diǎn),長為的線段PQ的兩端點(diǎn)在軌跡C上滑動(dòng).當(dāng)軸是的角平分線時(shí),求直線PQ的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖, 在△中, 點(diǎn)邊上, .

          (Ⅰ)求;

          (Ⅱ)若△的面積是, 求.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在極坐標(biāo)系中,已知曲線和曲線,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸非負(fù)半軸建立平面直角坐標(biāo)系.

          (1)求曲線和曲線的直角坐標(biāo)方程;

          (2)若點(diǎn)是曲線上一動(dòng)點(diǎn),過點(diǎn)作線段的垂線交曲線于點(diǎn),求線段長度的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】紅鈴蟲是棉花的主要害蟲之一,能對農(nóng)作物造成嚴(yán)重傷害,每只紅鈴蟲的平均產(chǎn)卵數(shù)y和平均溫度x有關(guān),現(xiàn)收集了以往某地的7組數(shù)據(jù),得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.(表中

          平均溫度

          21

          23

          25

          27

          29

          32

          35

          平均產(chǎn)卵數(shù)/個(gè)

          7

          11

          21

          24

          66

          115

          325

          27.429

          81.286

          3.612

          40.182

          147.714

          1)根據(jù)散點(diǎn)圖判斷,(其中自然對數(shù)的底數(shù))哪一個(gè)更適宜作為平均產(chǎn)卵數(shù)y關(guān)于平均溫度x的回歸方程類型?(給出判斷即可,不必說明理由)并由判斷結(jié)果及表中數(shù)據(jù),求出y關(guān)于x的回歸方程.(計(jì)算結(jié)果精確到小數(shù)點(diǎn)后第三位)

          2)根據(jù)以往統(tǒng)計(jì),該地每年平均溫度達(dá)到28℃以上時(shí)紅鈴蟲會(huì)造成嚴(yán)重傷害,需要人工防治,其他情況均不需要人工防治記該地每年平均溫度達(dá)到28℃以上的概率為.

          ①記該地今后5年中,恰好需要3次人工防治的概率為,求的最大值,并求出相應(yīng)的概率p.

          ②當(dāng)取最大值時(shí),記該地今后5年中,需要人工防治的次數(shù)為X,求X的數(shù)學(xué)期望和方差.

          附:線性回歸方程系數(shù)公式.

          查看答案和解析>>

          同步練習(xí)冊答案