日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓的離心率為,以原點(diǎn)為圓心,以橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)過(guò)橢圓的右焦點(diǎn)的直線與橢圓交于A,B,過(guò)垂直的直線與橢圓交于,,與交于,求證:直線,,的斜率,,成等差數(shù)列.

          【答案】(Ⅰ)(Ⅱ)見(jiàn)解析

          【解析】

          (Ⅰ)由題意知,得與直線相切,利用圓心到直線的距離d=r求b,再求a,c,則方程可求;(Ⅱ)設(shè)直線的方程為與橢圓聯(lián)立消y,得韋達(dá)定理,再設(shè) 直線的方程為,得P坐標(biāo),將坐標(biāo)化代入韋達(dá)定理,整理即可證明

          (1)由題意知,所以,即,

          又因?yàn)橐栽c(diǎn)為圓心,以橢圓的短半軸長(zhǎng)為半徑的圓

          與直線相切,所以圓心到直線的距離d,所以,,

          故橢圓的方程為

          (2)由題意知直線的斜率存在且不為0,則直線的方程為

          設(shè)點(diǎn),,利用根與系數(shù)的關(guān)系得,,

          由題意知直線的斜率為,則直線的方程為

          ,得點(diǎn)的坐標(biāo)

          ,所以成等差數(shù)列;

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】橢圓的左右焦點(diǎn)分別為為坐標(biāo)原點(diǎn),以下說(shuō)法正確的是(

          A.過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),則的周長(zhǎng)為.

          B.橢圓上存在點(diǎn),使得.

          C.橢圓的離心率為

          D.為橢圓一點(diǎn),為圓上一點(diǎn),則點(diǎn),的最大距離為.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】01,23,4這五個(gè)數(shù)字組成無(wú)重復(fù)數(shù)字的自然數(shù).

          (Ⅰ)在組成的三位數(shù)中,求所有偶數(shù)的個(gè)數(shù);

          (Ⅱ)在組成的三位數(shù)中,如果十位上的數(shù)字比百位上的數(shù)字和個(gè)位上的數(shù)字都小,則稱這個(gè)數(shù)為“凹數(shù)”,如301,423等都是“凹數(shù)”,試求“凹數(shù)”的個(gè)數(shù);

          (Ⅲ)在組成的五位數(shù)中,求恰有一個(gè)偶數(shù)數(shù)字夾在兩個(gè)奇數(shù)數(shù)字之間的自然數(shù)的個(gè)數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】選修4—4:坐標(biāo)系與參數(shù)方程

          已知曲線的參數(shù)方程為為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

          (Ⅰ)求曲線的直角坐標(biāo)方程及曲線上的動(dòng)點(diǎn)到坐標(biāo)原點(diǎn)的距離的最大值;

          (Ⅱ)若曲線與曲線相交于兩點(diǎn),且與軸相交于點(diǎn),求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓C (a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為.直線yk(x-1)與橢圓C交于不同的兩點(diǎn)M,N.

          (1)求橢圓C的方程;

          (2)當(dāng)△AMN的面積為時(shí),求k的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】(本小題10分)選修4—4:坐標(biāo)系與參數(shù)方程

          已知曲線C1的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sinθ。

          )把C1的參數(shù)方程化為極坐標(biāo)方程;

          )求C1C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下列結(jié)論中不正確的個(gè)數(shù)是(

          ①一個(gè)人打靶時(shí)連續(xù)射擊兩次,則事件至少有一次中靶與事件至多有一次中靶是對(duì)立事件;

          的充分不必要條件;

          ③若事件與事件滿足條件:,則事件與事件是對(duì)立事件;

          ④把紅、橙、黃、綠4張紙牌隨機(jī)分給甲、乙、丙、丁4人,每人分得1張,則事件甲分得紅牌與事件乙分得紅牌是互斥事件.

          A.1B.2C.3D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知離心率為2的雙曲線的一個(gè)焦點(diǎn)到一條漸近線的距離為.

          (1)求雙曲線的方程;

          (2)設(shè)分別為的左右頂點(diǎn),異于一點(diǎn),直線分別交軸于兩點(diǎn),求證:以線段為直徑的圓經(jīng)過(guò)兩個(gè)定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知|x|≤2,|y|≤2,點(diǎn)P的坐標(biāo)為(x,y).

          (1)求當(dāng)x,yR時(shí),P滿足(x-2)2+(y-2)2≤4的概率.

          (2)求當(dāng)x,yZ時(shí),P滿足(x-2)2+(y-2)2≤4的概率.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案