已知函數(shù),鈍角
(角
對邊為
)的角
滿足
.
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)若,求
.
(Ⅰ);(Ⅱ)
.
解析試題分析:利用余弦的兩角差公式和余弦的二倍角公式對化簡可得
,利用函數(shù)
的單調(diào)性可求出
的單調(diào)遞增區(qū)間;
(Ⅱ)由代入函數(shù)解析式可得
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/fb/4/104en3.png" style="vertical-align:middle;" />,所以
,故
根據(jù)余弦定理,有,解得
或
,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4d/1/1kjox3.png" style="vertical-align:middle;" />為鈍角三角形,所以
.
試題解析:(Ⅰ),由
,所以函數(shù)
的單調(diào)遞增區(qū)間是
.
(Ⅱ)由
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/fb/4/104en3.png" style="vertical-align:middle;" />,所以,故
根據(jù)余弦定理,有,解得
或
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4d/1/1kjox3.png" style="vertical-align:middle;" />為鈍角三角形,所以.
考點(diǎn):1.三角函數(shù)化簡,2余弦定理解三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
(2)當(dāng)時(shí),
的最大值為2,求
的值,并求出
的對稱軸方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求函數(shù)的單調(diào)遞減區(qū)間;
(2)將函數(shù)的圖像向左平移
個(gè)單位,再將所得圖像上各點(diǎn)的橫坐標(biāo)縮短為原來的
倍,縱坐標(biāo)不變,得到函數(shù)
的圖像,求
在
上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量a=,b=
,設(shè)函數(shù)
=a
b.
(Ⅰ)求的單調(diào)遞增區(qū)間;
(Ⅱ)若將的圖象向左平移
個(gè)單位,得到函數(shù)
的圖象,求函數(shù)
在區(qū)間
上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(
,c是實(shí)數(shù)常數(shù))的圖像上的一個(gè)最高點(diǎn)
,與該最高點(diǎn)最近的一個(gè)最低點(diǎn)是
,
(1)求函數(shù)的解析式及其單調(diào)增區(qū)間;
(2)在△ABC中,角A、B、C所對的邊分別為,且
,角A的取值范圍是區(qū)間M,當(dāng)
時(shí),試求函數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,角α,β的始邊為x軸的非負(fù)半軸,點(diǎn)在角α的終邊上,點(diǎn)
在角β的終邊上,且
(1)求
(2)求P,Q的坐標(biāo)并求的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)已知f(x)=sinx+2sin(+
)cos(
+
).(1)若f(α)=
,α∈(-
,0),求α的值;
(2)若sin=
,x∈(
,π),求f(x)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com