【題目】甲乙兩人玩猜數(shù)字游戲,先由甲心中想一個數(shù)字,記為,再由乙猜甲剛才所想的數(shù)字,把乙猜的數(shù)字記為
,其中
,若
,就稱甲乙“心有靈屏”.現(xiàn)任意找兩人玩這個游戲,則他們“心有靈犀”的概率為( )
A. B.
C.
D.
科目:高中數(shù)學 來源: 題型:
【題目】將一個各個面上均涂有顏色的正方體鋸成個同樣大小的小正方體,從這些小正方體中任意取兩個,這兩個都恰是兩面涂色的概率是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地統(tǒng)計局就該地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(每個分組包括左端點,不包括右端點,如第一組表示收入在[1000,1500)).
(1)求居民月收入在[2000,2500)的頻率;
(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);
(3)在月收入為[2500,3000),[3000,3500),[3500,4000]的三組居民中,采用分層抽樣方法抽出90人作進一步分析,則月收入在[3000,3500)的這段應(yīng)抽多少人?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱柱中,
平面
,
于點
,點
在棱
上,滿足
.
若
,求證:
平面
;
設(shè)平面
與平面
所成的銳二面角的大小為
,若
,試判斷命題“
”的真假,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知棱柱的底面是菱形,且
面ABCD,
,F為棱
的中點,M為線段
的中點.
(1)求證:面ABCD;
(2)判斷直線MF與平面的位置關(guān)系,并證明你的結(jié)論;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列中,
,
是數(shù)列
的前
項和,且
.
(1)求,
,并求數(shù)列
的通項公式
;
(2)設(shè),數(shù)列
的前
項和為
,若
對任意的正整數(shù)
都成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為改善人居環(huán)境,某區(qū)增加了對環(huán)境綜合治理的資金投入,已知今年治理環(huán)境(畝)與相應(yīng)的資金投入
(萬元)的四組對應(yīng)數(shù)據(jù)的散點圖如圖所示,用最小二乘法得到
關(guān)于
的線性回歸方程
.
(1)求的值,并預(yù)測今年治理環(huán)境10畝所需投入的資金是多少萬元?
(2)已知該區(qū)去年治理環(huán)境10畝所投入的資金為3.5萬元,根據(jù)(1)的結(jié)論,請你對該區(qū)環(huán)境治理給出一條簡短的評價.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,設(shè)直線:
,
:
.點
的坐標為
.過點
的直線
的斜率為
,且與
,
分別交于點
,
(
,
的縱坐標均為正數(shù)).
(1)求實數(shù)的取值范圍;
(2)設(shè),求
面積的最小值;
(3)是否存在實數(shù),使得
的值與
無關(guān)?若存在,求出所有這樣的實數(shù)
;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】小威初三參加某高中學校的數(shù)學自主招生考試,這次考試由十道選擇題組成.得分要求是:做對一道題得分,做錯一道題扣去
分,不做得
分,總得分
分就算及格.小威的目標是至少得
分獲得及格.在這次考試中,小威確定他做的前六題全對,記
分;而他做余下的四道題中每道題做對的概率均為
.考試中,小威思量:從余下的四道題中再做一道并且及格的概率
;從余下的四道題中恰做兩道并且及格的概率
.他發(fā)現(xiàn)
,只做一道更容易及格.
(1)求:小威從余下的四道題中恰做三道并且及格的概率,從余下的四道題中全做并且及格的概率
,求
及
;
(2)由于的大小影響,請你幫小威討論:小威從余下的四道題中恰做幾道并且及格的概率最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com