日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】假設(shè)關(guān)于某設(shè)備使用年限x(年)和所支出的維修費(fèi)用y(萬元)有如下統(tǒng)計(jì)資料:

          2

          3

          4

          5

          6

          y

          2.2

          3.8

          5.5

          6.5

          7.0

          若由資料知,y對(duì)x呈線性相關(guān)關(guān)系,試求:
          (Ⅰ)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;
          (Ⅱ)請(qǐng)根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程=bx+;
          (Ⅲ)估計(jì)使用年限為10年時(shí),維修費(fèi)用約是多少?
          (參考數(shù)據(jù):2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3)

          【答案】解:(I)表中數(shù)據(jù)的散點(diǎn)圖如下圖所示:

          (II)∵b==1.23
          =4,=5,
          ∴樣本中心點(diǎn)的坐標(biāo)是(4,5)
          ∴5=4×1.23+a
          ∴a=0.08,
          ∴線性回歸方程是y=1.23x+0.08,
          (III)當(dāng)x=10時(shí),y=1.23×10+0.08=12.38
          ∴使用年限為10年時(shí),維修費(fèi)用約是12.38萬元
          【解析】(I)由已知中某設(shè)備使用年限x(年)和所支出的維修費(fèi)用y(萬元)的統(tǒng)計(jì)表中數(shù)據(jù),易畫出數(shù)據(jù)的散點(diǎn)圖;
          (Ⅱ)根據(jù)所給的樣本中心點(diǎn)和兩個(gè)最小二乘法要用的和式,寫出b的表示式,求出結(jié)果,再代入樣本中心點(diǎn)求出a,寫出線性回歸方程;
          (III)根據(jù)(II)中所得的線性回歸方程,代入x=10求出預(yù)報(bào)值,即使用年限為10年時(shí),維修費(fèi)用的估算值。

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C: =1的離心率為 ,焦距為2,右焦點(diǎn)為F,過點(diǎn)F的直線交橢圓于A、B兩點(diǎn).
          (1)求橢圓C的方程;
          (2)在x軸上是否存在定點(diǎn)M,使得 為定值?若存在,求出定值和定點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)f(x)=﹣x2+(3﹣2m)x+2+m(0<m≤1).
          (1)若x∈[0,m],證明:f(x)≤ ;
          (2)求|f(x)|在[﹣1,1]上的最大值g(m).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】一臺(tái)機(jī)器按不同的轉(zhuǎn)速生產(chǎn)出來的某機(jī)械零件有一些會(huì)有缺點(diǎn),每小時(shí)生產(chǎn)有缺點(diǎn)零件的多少,隨機(jī)器的運(yùn)轉(zhuǎn)的速度而變化,具有線性相關(guān)關(guān)系,下表為抽樣試驗(yàn)的結(jié)果:

          轉(zhuǎn)速x(轉(zhuǎn)/秒)

          8

          10

          12

          14

          16

          每小時(shí)生產(chǎn)有缺點(diǎn)的零件數(shù)y(件)

          5

          7

          8

          9

          11

          (1)如果y對(duì)x有線性相關(guān)關(guān)系,求回歸方程;
          (2)若實(shí)際生產(chǎn)中,允許每小時(shí)生產(chǎn)的產(chǎn)品中有缺點(diǎn)的零件最多有10個(gè),那么機(jī)器的運(yùn)轉(zhuǎn)速度應(yīng)控制在設(shè)么范圍內(nèi)?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】自駕游從地到地有甲乙兩條線路,甲線路是,乙線是,其中段、段、段都是易堵車路段.假設(shè)這三條路段堵車與否相互獨(dú)立.這三條路段的堵車概率及平均堵車時(shí)間如表1所示.經(jīng)調(diào)查發(fā)現(xiàn),堵車概率上變化, 上變化.在不堵車的情況下.走線路甲需汽油費(fèi)500元,走線路乙需汽油費(fèi)545元.而每堵車1小時(shí),需多花汽油費(fèi)20元.路政局為了估計(jì)段平均堵車時(shí)間,調(diào)查了100名走甲線路的司機(jī),得到表2數(shù)據(jù).

          CD段

          EF段

          GH段

          堵車概率

          平均堵車時(shí)間

          (單位:小時(shí))

          2

          1

          (表1)

          堵車時(shí)間(單位:小時(shí))

          頻數(shù)

          8

          6

          38

          24

          24

          (表2)

          (1)求段平均堵車時(shí)間的值.

          (2)若只考慮所花汽油費(fèi)期望值的大小,為了節(jié)約,求選擇走甲線路的概率.

          (3)在(2)的條件下,某4名司機(jī)中走甲線路的人數(shù)記為X,求X的數(shù)學(xué)期望。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)據(jù)是上海普通職工n個(gè)人的年收入,設(shè)n個(gè)數(shù)據(jù)的中位數(shù)為x,平均數(shù)為y,方差為z,如果再加上世界首富的年收入 , 則這n+1個(gè)數(shù)據(jù)中,下列說法正確的是 ( )
          A.年收入平均數(shù)大大增加,中位數(shù)一定變大,方差可能不變
          B.年收入平均數(shù)大大增加,中位數(shù)可能不變,方差變大
          C.年收入平均數(shù)大大增加,中位數(shù)可能不變,方差也不變
          D.年收入平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)(x∈R)為奇函數(shù),f(1)= ,f(x+2)=f(x)+f(2),則f(5)=(
          A.0
          B.1
          C.
          D.5

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在極坐標(biāo)系中,圓的極坐標(biāo)方程為.若以極點(diǎn)為原點(diǎn),極軸所在直線為軸建立平面直角坐標(biāo)系.

          )求圓的參數(shù)方程;

          )在直角坐標(biāo)系中,點(diǎn)是圓上動(dòng)點(diǎn),試求的最大值,并求出此時(shí)點(diǎn)的直角坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,平行六面體ABCD﹣A1B1C1D1中,側(cè)棱B1B長為3,底面是邊長為2的菱形,∠A1AB=120°,∠A1AD=60°,點(diǎn)E在棱B1B上,則AE+C1E的最小值為( 。

          A.
          B.5
          C.2
          D.7

          查看答案和解析>>

          同步練習(xí)冊(cè)答案