日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在平面直角坐標(biāo)系xOy中,中心在原點(diǎn)的橢圓C的上焦點(diǎn)為,離心率等于

          求橢圓C的方程;

          設(shè)過(guò)且不垂直于坐標(biāo)軸的動(dòng)直線l交橢圓CA、B兩點(diǎn),問(wèn):線段OF上是否存在一點(diǎn)D,使得以DA、DB為鄰邊的平行四邊形為菱形?作出判斷并證明.

          【答案】(1)(2)存在滿足條件的點(diǎn)

          【解析】

          1)根據(jù)題意可得,,即可求出橢圓方程;(2)設(shè)滿足條件的點(diǎn),則,設(shè)的方程為:,(),代入橢圓方程,根據(jù)菱形的對(duì)角線互相垂直即,結(jié)合韋達(dá)定理和向量的運(yùn)算即可求出.

          解:(1)由題意可知橢圓的離心率,

          所以,進(jìn)而橢圓的方程為

          (2)存在滿足條件的點(diǎn).

          設(shè)滿足條件的點(diǎn),則(),

          設(shè)的方程為:,(),代入橢圓方程,,

          設(shè),,則,∴.

          、為鄰邊的平行四邊形為菱形,∴

          ,的方向向量為

          ,∴,

          ,∴存在滿足條件的點(diǎn).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知直線與圓C相交,截得的弦長(zhǎng)為.

          1)求圓C的方程;

          2)過(guò)原點(diǎn)O作圓C的兩條切線,與函數(shù)的圖象相交于M、N兩點(diǎn)(異于原點(diǎn)),證明:直線與圓C相切;

          3)若函數(shù)圖象上任意三個(gè)不同的點(diǎn)P、QR,且滿足直線都與圓C相切,判斷線與圓C的位置關(guān)系,并加以證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】隨著國(guó)家二孩政策的全面放開(kāi),為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機(jī)構(gòu)用簡(jiǎn)單隨機(jī)抽樣方法從不同地區(qū)調(diào)查了100位育齡婦女,結(jié)果如下表.

          非一線城市

          一線城市

          總計(jì)

          愿生

          45

          20

          65

          不愿生

          13

          22

          35

          總計(jì)

          58

          42

          100

          附表:

          算得,,

          參照附表,得到的正確結(jié)論是

          A. 在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“生育意愿與城市級(jí)別有關(guān)”

          B. 在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“生育意愿與城市級(jí)別無(wú)關(guān)”

          C. 有99%以上的把握認(rèn)為“生育意愿與城市級(jí)別有關(guān)”

          D. 有99%以上的把握認(rèn)為“生育意愿與城市級(jí)別無(wú)關(guān)”

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某少數(shù)民族的刺繡有著悠久的歷史,下圖(1)、(2)、(3)、(4)為她們刺繡最簡(jiǎn)單的四個(gè)圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第個(gè)圖形包含個(gè)小正方形.

          (1)求出,,并猜測(cè)的表達(dá)式;

          (2)求證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓 (ab0)的離心率為,長(zhǎng)軸長(zhǎng)為4.過(guò)橢圓的左頂點(diǎn)A作直線l,分別交橢圓和圓x2y2a2于相異兩點(diǎn)P,Q.

          (1)若直線l的斜率為,求的值;

          (2),求實(shí)數(shù)λ的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】一對(duì)夫婦為了給他們的獨(dú)生孩子支付將來(lái)上大學(xué)的費(fèi)用,從孩子一周歲生日開(kāi)始,每年到銀行儲(chǔ)蓄元一年定期,若年利率為保持不變,且每年到期時(shí)存款(含利息)自動(dòng)轉(zhuǎn)為新的一年定期,當(dāng)孩子18歲生日時(shí)不再存入,將所有存款(含利息)全部取回,則取回的錢的總數(shù)為  

          A.B.

          C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知某海濱浴場(chǎng)海浪的高度(米是時(shí)刻,單位:時(shí))的函數(shù),記作:,下表是某日各時(shí)刻的浪高數(shù)據(jù):

          時(shí)

          0

          3

          6

          9

          12

          15

          18

          21

          24

          1.5

          1.0

          0.5

          1.0

          1.5

          1.0

          0.5

          1.0

          1.5

          經(jīng)長(zhǎng)期觀測(cè),的曲線可近似地看成是函數(shù),的圖象.

          )根據(jù)以上數(shù)據(jù),求函數(shù)的最小正周期,振幅及函數(shù)表達(dá)式;

          2)依據(jù)規(guī)定,當(dāng)海浪高度高于1米時(shí)才對(duì)沖浪愛(ài)好者開(kāi)放,請(qǐng)依據(jù)(1)的結(jié)論,判斷一天內(nèi)的之間,那個(gè)時(shí)間段不對(duì)沖浪愛(ài)好者開(kāi)放?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          (1)若函數(shù),試研究函數(shù)的極值情況;

          (2)記函數(shù)在區(qū)間內(nèi)的零點(diǎn)為,記,若在區(qū)間內(nèi)有兩個(gè)不等實(shí)根,證明:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知PA⊥平面ABCD,且四邊形ABCD為矩形,M、N分別是AB、PC的中點(diǎn).

          1求證:MN⊥CD;

          2若∠PDA=45°,求證:MN⊥平面PCD.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案