日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在ABC中,∠ABC90°AB,BC1PABC內(nèi)一點,∠BPC90°.

          (1)PB,求PA;

          (2)若∠APB150°,求tanPBA.

          【答案】12

          【解析】試題分析:1)在三角形中,兩邊和一角知道,該三角形是確定的,其解是唯一的,利用余弦定理求第三邊.2)利用同角三角函數(shù)的基本關(guān)系求角的正切值.3)若是已知兩邊和一邊的對角,該三角形具有不唯一性,通常根據(jù)大邊對大角進(jìn)行判斷.4)在三角興中,注意這個隱含條件的使用.

          試題解析:解:(1)由已知得∠PBC60°,所以∠PBA30°.

          △PBA中,由余弦定理得PA2.

          PA. 5

          2)設(shè)∠PBAα,由已知得PBsin α.

          PBA中,由正弦定理得

          化簡得cos α4sin α.

          所以tan α,即tanPBA. 12

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,△ABC是等腰直角三角形∠CAB=90°,AC=2a,E,F(xiàn)分別為AC,BC的中點,沿EF將△CEF折起,得到如圖2所示的四棱錐C′﹣ABFE
          (1)求證:AB⊥平面AEC′;
          (2)當(dāng)四棱錐C′﹣ABFE體積取最大值時,
          ①若G為BC′中點,求異面直線GF與AC′所成角;
          ②在C′﹣ABFE中AE交BF于C,求二面角A﹣CC′﹣B的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】假設(shè)關(guān)于某種設(shè)備的使用年限 (年)與所支出的維修費用 (萬元)有如下統(tǒng)計資料:

          x

          2

          3

          4

          5

          6

          y

          2.2

          3.8

          5.5

          6.5

          7.0

          已知 .

          ,

          (1)求, ;

          (2) 具有線性相關(guān)關(guān)系,求出線性回歸方程;

          (3)估計使用年限為10年時,維修費用約是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線lx2y2m20

          (1)求過點(2,3)且與直線l垂直的直線的方程;

          (2)若直線l與兩坐標(biāo)軸所圍成的三角形的面積大于4,求實數(shù)m的取值范圍.

          【答案】(1);(2)

          【解析】試題分析:(1)由直線的斜率為,可得所求直線的斜率為,代入點斜式方程,可得答案;(2)直線與兩坐標(biāo)軸的交點分別為,則所圍成的三角形的面積為,根據(jù)直線與兩坐標(biāo)軸所圍成的三角形的面積為大于,構(gòu)造不等式,解得答案.

          試題解析:(1)與直線l垂直的直線的斜率為-2,

          因為點(2,3)在該直線上,所以所求直線方程為y3=-2(x2),

          故所求的直線方程為2xy70

          (2) 直線l與兩坐標(biāo)軸的交點分別為(-2m+2,0),(0,m-1),

          則所圍成的三角形的面積為×|-2m+2|×|m-1|.

          由題意可知×|-2m+2|×|m-1|>4,化簡得(m-1)2>4,

          解得m>3或m<-1,

          所以實數(shù)m的取值范圍是(-,-1)∪(3,+∞)

          【方法點睛】本題主要考查直線的方程,兩條直線平行與斜率的關(guān)系,屬于簡單題. 對直線位置關(guān)系的考查是熱點命題方向之一,這類問題以簡單題為主,主要考查兩直線垂直與兩直線平行兩種特殊關(guān)系:在斜率存在的前提下,(1 ;(2,這類問題盡管簡單卻容易出錯,特別是容易遺忘斜率不存在的情況,這一點一定不能掉以輕心.

          型】解答
          結(jié)束】
          18

          【題目】在平面直角坐標(biāo)系中,已知經(jīng)過原點O的直線與圓交于兩點。

          (1)若直線與圓相切,切點為B,求直線的方程;

          (2)若,求直線的方程;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】ABC中,∠A,B,C的對邊分別為, , ,若,

          (1)求∠B的大。

          (2), ,求ABC的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】電視連續(xù)劇《人民的名義》自2017年3月28日在湖南衛(wèi)視開播以來,引發(fā)各方關(guān)注,收視率、點擊率均占據(jù)各大排行榜首位.我們用簡單隨機(jī)抽樣的方法對這部電視劇的觀看情況進(jìn)行抽樣調(diào)查,共調(diào)查了600人,得到結(jié)果如下:其中圖1是非常喜歡《人民的名義》這部電視劇的觀眾年齡的頻率分布直方圖;表1是不同年齡段的觀眾選擇不同觀看方式的人數(shù).
          表1

          觀看方式
          年齡(歲)

          電視

          網(wǎng)絡(luò)

          150

          250

          120

          80


          求:(I)假設(shè)同一組中的每個數(shù)據(jù)用該組區(qū)間的中點值代替,求非常喜歡《人民的名義》這部電視劇的觀眾的平均年齡;
          (II)根據(jù)表1,通過計算說明我們是否有99%的把握認(rèn)為觀看該劇的方式與年齡有關(guān)?

          0.50

          0.40

          0.25

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          0.455

          0.708

          1.323

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          附:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為響應(yīng)市政府“綠色出行”的號召,王老師每個工作日上下班由自駕車改為選擇乘坐地鐵或騎共享單車這兩種方式中的一種出行.根據(jù)王老師從2017年3月到2017年5月的出行情況統(tǒng)計可知,王老師每次出行乘坐地鐵的概率是0.4,騎共享單車的概率是0.6.乘坐地鐵單程所需的費用是3元,騎共享單車單程所需的費用是1元.記王老師在一個工作日內(nèi)上下班所花費的總交通費用為X元,假設(shè)王老師上下班選擇出行方式是相互獨立的.
          (I)求X的分布列和數(shù)學(xué)期望
          (II)已知王老師在2017年6月的所有工作日(按22個工作日計)中共花費交通費用110元,請判斷王老師6月份的出行規(guī)律是否發(fā)生明顯變化,并依據(jù)以下原則說明理由.
          原則:設(shè) 表示王老師某月每個工作日出行的平均費用,若 ,則有95%的把握認(rèn)為王老師該月的出行規(guī)律與前幾個月的出行規(guī)律相比有明顯變化.(注:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】口袋中裝有2個白球和nn≥2,n N*)個紅球.每次從袋中摸出2個球(每次摸球后把這2個球放回口袋中),若摸出的2個球顏色相同則為中獎,否則為不中獎.
          (I)用含n的代數(shù)式表示1次摸球中獎的概率;
          (Ⅱ)若n=3,求3次摸球中恰有1次中獎的概率;
          (III)記3次摸球中恰有1次中獎的概率為fp),當(dāng)fp)取得最大值時,求n的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知:函數(shù)

          求函數(shù)的周期T與單調(diào)增區(qū)間.

          函數(shù)的圖象有幾個公共交點.

          設(shè)關(guān)于x的函數(shù)的最小值為,試確定滿足a的值.

          查看答案和解析>>

          同步練習(xí)冊答案