已知等比數(shù)列的前
項(xiàng)和為
,若
,且
求數(shù)列
的通項(xiàng)公式以及前
項(xiàng)和
.
解析試題分析:解:根據(jù)題意,由于等比數(shù)列的前
項(xiàng)和為
,若
,且
當(dāng)
時(shí),
;
當(dāng)時(shí),
.
考點(diǎn):等比數(shù)列
點(diǎn)評(píng):主要是考查了等比數(shù)列的通項(xiàng)公式和前n項(xiàng)和的運(yùn)用,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
等比數(shù)列{}的前n項(xiàng)和為
,已知對(duì)任意的
,點(diǎn)
,均在函數(shù)
且
均為常數(shù))的圖像上.
(1)求r的值;
(2)當(dāng)b=2時(shí),記 求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,數(shù)列
滿(mǎn)足
,數(shù)列
滿(mǎn)足
;數(shù)列
為公比大于
的等比數(shù)列,且
為方程
的兩個(gè)不相等的實(shí)根.
(Ⅰ)求數(shù)列和數(shù)列
的通項(xiàng)公式;
(Ⅱ)將數(shù)列中的第
項(xiàng),第
項(xiàng),第
項(xiàng),……,第
項(xiàng),……刪去后剩余的項(xiàng)按從小到大的順序排成新數(shù)列
,求數(shù)列
的前
項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的前n項(xiàng)和為
,
,且
,數(shù)列
滿(mǎn)足
,數(shù)列
的前n項(xiàng)和為
(其中
).
(Ⅰ)求和
;
(Ⅱ)若對(duì)任意的,不等式
恒成立,求實(shí)數(shù)
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知公差不為0的等差數(shù)列的前
項(xiàng)和為
,
,且
成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)試推導(dǎo)數(shù)列的前
項(xiàng)和
的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在數(shù)列{}中,
,
,設(shè)
,
(1)證明:數(shù)列{}是等差數(shù)列;
(2)求數(shù)列{}的前n項(xiàng)和
;
(3)設(shè),證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}的各項(xiàng)均為正數(shù),前n項(xiàng)的和Sn=
⑴ 求{an}的通項(xiàng)公式;
⑵ 設(shè)等比數(shù)列{bn}的首項(xiàng)為b,公比為2,前n項(xiàng)的和為T(mén)n.若對(duì)任意n∈N*,Sn≤Tn
均成立,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com