【題目】已知橢圓:
在左、右焦點(diǎn)分別為
,
,上頂點(diǎn)為點(diǎn)
,若
是面積為
的等邊三角形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知,
是橢圓
上的兩點(diǎn),且
,求使
的面積最大時(shí)直線
的方程(
為坐標(biāo)原點(diǎn)).
【答案】解(1);(2)
或
.
【解析】
(1)由是面積為
的等邊三角形,結(jié)合性質(zhì)
,列出關(guān)于
、
的方程組,求出
、
,即可得結(jié)果;(2)先證明直線
的斜率存在,設(shè)直線
的方程為
,與橢圓方程聯(lián)立消去
,利用弦長(zhǎng)公式可得
,化簡(jiǎn)得
.原點(diǎn)
到直線
的距離為
,
的面積
,當(dāng)
最大時(shí),
的面積最大.由
,利用二次函數(shù)的性質(zhì)可得結(jié)果.
(1)由是面積為
的等邊三角形,得
,
所以,
,從而
,
所以橢圓的標(biāo)準(zhǔn)方程為
.
(2)由(1)知,當(dāng)軸時(shí),
,則
為橢圓
的短軸,故有
,
,
三點(diǎn)共線,不合題意.
所以直線的斜率存在,設(shè)直線
的方程為
,點(diǎn)
,點(diǎn)
,聯(lián)立方程組
消去
,得
,
所以有,
,
則
,
即,化簡(jiǎn)得
.
因?yàn)?/span>,所以有
且
.
原點(diǎn)到直線
的距離為
,
的面積
,
所以當(dāng)最大時(shí),
的面積最大.
因?yàn)?/span>,而
,
所以當(dāng)時(shí),
取最大值為3,
面積的最大值
.
把代入
,得
,所以有
,
即直線的方程為
或
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1) 解關(guān)于x的不等式;
(2) 若函數(shù)的圖像恒在函數(shù)
圖像的上方,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】上海市旅游節(jié)剛落下帷幕,在旅游節(jié)期間,甲、乙、丙三位市民顧客分別獲得一些景區(qū)門票的折扣消費(fèi)券,數(shù)量如表1,已知這些景區(qū)原價(jià)和折扣價(jià)如表2(單位:元).
表1:
數(shù)量 | 景區(qū)1 | 景區(qū)2 | 景區(qū)3 |
甲 | 0 | 2 | 2 |
乙 | 3 | 0 | 1 |
丙 | 4 | 1 | 0 |
表2:
門票 | 景區(qū)1 | 景區(qū)2 | 景區(qū)3 |
原價(jià) | 60 | 90 | 120 |
折扣后價(jià) | 40 | 60 | 80 |
(1)按照上述表格的行列次序分別寫出這三位市民獲得的折扣消費(fèi)券數(shù)量矩陣A和三個(gè)景區(qū)的門票折扣后價(jià)格矩陣B;
(2)利用你所學(xué)的矩陣知識(shí),計(jì)算三位市民各獲得多少元折扣?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017高考新課標(biāo)Ⅲ,理19)如圖,四面體ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(1)證明:平面ACD⊥平面ABC;
(2)過AC的平面交BD于點(diǎn)E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角D–AE–C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是橢圓
與拋物線
的一個(gè)公共點(diǎn),且橢圓與拋物線具有一個(gè)相同的焦點(diǎn)
.
(1)求橢圓及拋物線
的方程;
(2)設(shè)過且互相垂直的兩動(dòng)直線
,
與橢圓
交于
兩點(diǎn),
與拋物線
交于
兩點(diǎn),求四邊形
面積的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)古代數(shù)學(xué)家祖暅提出原理:“冪勢(shì)既同,則積不容異”.其中“冪”是截面積,“勢(shì)”是幾何體的高.該原理的意思是:夾在兩個(gè)平行平面間的兩個(gè)幾何體,被任一平行于這兩個(gè)平行平面的平面所截,若所截的兩個(gè)截面的面積恒相等,則這兩個(gè)幾何體的體積相等.如圖,在空間直角坐標(biāo)系中的平面內(nèi),若函數(shù)
的圖象與
軸圍成一個(gè)封閉的區(qū)域
,將區(qū)域
沿
軸的正方向平移8個(gè)單位長(zhǎng)度,得到幾何體如圖一,現(xiàn)有一個(gè)與之等高的圓柱如圖二,其底面積與區(qū)域
的面積相等,則此圓柱的體積為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著互聯(lián)網(wǎng)技術(shù)的快速發(fā)展,人們更加關(guān)注如何高效地獲取有價(jià)值的信息,網(wǎng)絡(luò)知識(shí)付費(fèi)近兩年呈現(xiàn)出爆發(fā)式的增長(zhǎng),為了了解網(wǎng)民對(duì)網(wǎng)絡(luò)知識(shí)付費(fèi)的態(tài)度,某網(wǎng)站隨機(jī)抽查了歲及以上不足
歲的網(wǎng)民共
人,調(diào)查結(jié)果如下:
(1)請(qǐng)完成上面的列聯(lián)表,并判斷在犯錯(cuò)誤的概率不超過
的前提下,能否認(rèn)為網(wǎng)民對(duì)網(wǎng)絡(luò)知識(shí)付費(fèi)的態(tài)度與年齡有關(guān)?
(2)在上述樣本中用分層抽樣的方法,從支持和反對(duì)網(wǎng)絡(luò)知識(shí)付費(fèi)的兩組網(wǎng)民中抽取名,若在上述
名網(wǎng)民中隨機(jī)選
人,求至少1人支持網(wǎng)絡(luò)知識(shí)付費(fèi)的概率.
附:,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓:
的左、右焦點(diǎn)分別為
,
,下頂點(diǎn)為
,橢圓
的離心率是
,
的面積是
.
(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)直線與橢圓
交于
,
兩點(diǎn)(異于
點(diǎn)),若直線
與直線
的斜率之和為1,證明:直線
恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個(gè)定點(diǎn),
的距離之比為定值
的點(diǎn)的軌跡是圓”.后來,人們將這個(gè)圓以他的名字命名,稱為阿波羅尼斯圓,簡(jiǎn)稱阿氏圓.在平面直角坐標(biāo)系
中,
,
,點(diǎn)
滿足
.設(shè)點(diǎn)
的軌跡為
,下列結(jié)論正確的是( )
A.的方程為
B.在上存在點(diǎn)
,使得
C.當(dāng),
,
三點(diǎn)不共線時(shí),射線
是
的平分線
D.在三棱錐中,
面
,且
,
,
,該三棱錐體積最大值為12
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com