日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù),.
          (1)a≥-2時,求F(x)=f(x)-g(x)的單調(diào)區(qū)間;
          (2)設(shè)h(x)=f(x)+g(x),且h(x)有兩個極值點(diǎn)為,其中,求的最小值.

          (1)詳見解析;(2).

          解析試題分析:本題主要考查函數(shù)的單調(diào)性、函數(shù)的最值、導(dǎo)數(shù)等基礎(chǔ)知識,意在考查考生的運(yùn)算求解能力、推理論證能能力以及分類討論思想和等價轉(zhuǎn)化思想的應(yīng)用.第一問,先確定的解析式,求出函數(shù)的定義域,對求導(dǎo),此題需討論的判別式,來決定是否有根,利用求函數(shù)的增區(qū)間,求函數(shù)的減區(qū)間;第二問,先確定解析式,確定函數(shù)的定義域,先對函數(shù)求導(dǎo),求出的兩根,即,而利用韋達(dá)定理,得到,即得到代入到中,要求,則構(gòu)造函數(shù),求出的最小值即可,對求導(dǎo),判斷函數(shù)的單調(diào)性,求出函數(shù)的最小值即為所求.
          試題解析:(1)由題意,其定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/83/b/pmhfl1.png" style="vertical-align:middle;" />,則,2分
          對于,有.
          ①當(dāng)時,,∴的單調(diào)增區(qū)間為;
          ②當(dāng)時,的兩根為,
          的單調(diào)增區(qū)間為,
          的單調(diào)減區(qū)間為.
          綜上:當(dāng)時,的單調(diào)增區(qū)間為
          當(dāng)時,的單調(diào)增區(qū)間為,
          的單調(diào)減區(qū)間為.   6分
          (2)對,其定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/98/f/1cajo4.png" style="vertical-align:middle;" />.
          求導(dǎo)得,,
          由題兩根分別為,,則有,,   8分
          ,從而有
          ,  10分
          .
          當(dāng)時,,∴上單調(diào)遞減,
          ,
          .      12分
          考點(diǎn):函數(shù)的單調(diào)性、函數(shù)的最值、導(dǎo)數(shù)的性質(zhì).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如果函數(shù)的定義域?yàn)镽,對于定義域內(nèi)的任意,存在實(shí)數(shù)使得成立,則稱此函數(shù)具有“性質(zhì)”。
          (1)判斷函數(shù)是否具有“性質(zhì)”,若具有“性質(zhì)”,求出所有的值;若不具有“性質(zhì)”,說明理由;
          (2)已知具有“性質(zhì)”,且當(dāng),求上有最大值;
          (3)設(shè)函數(shù)具有“性質(zhì)”,且當(dāng)時,.若交點(diǎn)個數(shù)為2013,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          定義:對于函數(shù),若存在非零常數(shù),使函數(shù)對于定義域內(nèi)的任意實(shí)數(shù),都有,則稱函數(shù)是廣義周期函數(shù),其中稱為函數(shù)的廣義周期,稱為周距.
          (1)證明函數(shù)是以2為廣義周期的廣義周期函數(shù),并求出它的相應(yīng)周距的值;
          (2)試求一個函數(shù),使為常數(shù),)為廣義周期函數(shù),并求出它的一個廣義周期和周距;
          (3)設(shè)函數(shù)是周期的周期函數(shù),當(dāng)函數(shù)上的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/00/1/aujvk.png" style="vertical-align:middle;" />時,求上的最大值和最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)f(x)=(x+2)ln(x+1)-ax2-x(a∈R),g(x)=ln(x+1).
          (1)若a=0,F(xiàn)(x)=f(x)-g(x),求函數(shù)F(x)的極值點(diǎn)及相應(yīng)的極值.
          (2)若對于任意x2>0,存在x1滿足x1<x2且g(x1)=f(x2)成立,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),若函數(shù)的圖象恒在軸上方,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          對于函數(shù)).
          (1)探索并證明函數(shù)的單調(diào)性;
          (2)是否存在實(shí)數(shù)使函數(shù)為奇函數(shù)?若有,求出實(shí)數(shù)的值,并證明你的結(jié)論;若沒有,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知二次函數(shù)在區(qū)間 上有最大值,最小值.
          (1)求函數(shù)的解析式;
          (2)設(shè).若時恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (1)已知α、β是方程x2+(2m-1)x+4-2m=0的兩個實(shí)根,且α<2<β,求m的取值范圍;(2)若方程x2+ax+2=0的兩根都小于-1,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)f(x)=x3.
          (1)判斷f(x)的奇偶性;(2)求證:f(x)>0.

          查看答案和解析>>

          同步練習(xí)冊答案