已知二次函數(shù)在區(qū)間
上有最大值
,最小值
.
(1)求函數(shù)的解析式;
(2)設(shè).若
在
時(shí)恒成立,求
的取值范圍.
(1);(2)
.
解析試題分析:(1)根據(jù)二次函數(shù)的最值建立方程組,即可求函數(shù)的解析式;(2)將
在
時(shí)恒成立進(jìn)行轉(zhuǎn)化為求函數(shù)最值,即可求出
的取值范圍.求最值時(shí)考慮利用換元當(dāng)將函數(shù)轉(zhuǎn)化為求二次函數(shù)在一個(gè)閉區(qū)間上的最值.
試題解析:(1)∵,
∴函數(shù)的圖象的對(duì)稱軸方程為
.
依題意得
,即
,解得
,
∴.
(2)∵,∴
.
∵在
時(shí)恒成立,即
在
時(shí)恒成立,
∴在
時(shí)恒成立,
只需 .
令,由
得
設(shè),
∵,
∴函數(shù)的圖象的對(duì)稱軸方程為
.
當(dāng)時(shí),取得最大值
.
∴ ∴
的取值范圍為
.
考點(diǎn):1、函數(shù)恒成立問題;2、函數(shù)解析式的求解及常用方法;3、二次函數(shù)在閉區(qū)間上的最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時(shí),求
的單調(diào)區(qū)間;
(2)若不等式有解,求實(shí)數(shù)m的取值菹圍;
(3)證明:當(dāng)a=0時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/6c/e/ons7m2.png" style="vertical-align:middle;" />,若存在常數(shù)
,使得
對(duì)一切實(shí)數(shù)
均成立,則稱
為“圓錐托底型”函數(shù).
(1)判斷函數(shù),
是否為“圓錐托底型”函數(shù)?并說明理由.
(2)若是“圓錐托底型” 函數(shù),求出
的最大值.
(3)問實(shí)數(shù)、
滿足什么條件,
是“圓錐托底型” 函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
.
(1)a≥-2時(shí),求F(x)=f(x)-g(x)的單調(diào)區(qū)間;
(2)設(shè)h(x)=f(x)+g(x),且h(x)有兩個(gè)極值點(diǎn)為,其中
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
求下列各題中的函數(shù)f(x)的解析式.
(1) 已知f(+2)=x+4
,求f(x);
(2) 已知f=lgx,求f(x);
(3) 已知函數(shù)y=f(x)滿足2f(x)+f=2x,x∈R且x≠0,求f(x);
(4) 已知f(x)是二次函數(shù),且滿足f(0)=1,f(x+1)=f(x)+2x,求f(x).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)對(duì)任意實(shí)數(shù)
恒有
且當(dāng)
時(shí),有
且
.
(1)判斷的奇偶性;
(2)求在區(qū)間
上的最大值;
(3)解關(guān)于的不等式
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義域?yàn)镽的函數(shù)f(x)=是奇函數(shù).
(1)求a,b的值.
(2)用定義證明f(x)在(-∞,+∞)上為減函數(shù).
(3)若對(duì)于任意t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com