【題目】已知a,b,c為正實(shí)數(shù),且滿足a+b+c=1.證明:
(1)|a|+|b+c﹣1|
;
(2)(a3+b3+c3)()≥3.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析
【解析】
(1)根據(jù)a,b,c為正實(shí)數(shù),且滿足a+b+c=1,得到b+c﹣1=﹣a<0,則|a|+|b+c﹣1|=|a
|+|﹣a|,再利用絕對(duì)值三角不等式求解.
(2)利用(a3+b3+c3)≥3abc,得到(a3+b3+c3)()≥3abc(
),進(jìn)而變形為
,再利用基本不等式求解.
(1)∵a,b,c為正實(shí)數(shù),且滿足a+b+c=1,
∴b+c﹣1=﹣a<0,
∴|a|+|b+c﹣1|=|a
|+|﹣a|≥|(a
)+(﹣a)|
.
當(dāng)且僅當(dāng)(a)(﹣a)≥0,即0
時(shí),等號(hào)成立.
∴|a|+|b+c﹣1|
;
(2)(a3+b3+c3)()≥3abc
,
,
,
,
=3(a+b+c)=3.
當(dāng)且僅當(dāng)a=b=c時(shí)等號(hào)成立.
∴(a3+b3+c3)()≥3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
,曲線
過(guò)點(diǎn)
,且在點(diǎn)
處的切線方程為
.
(1)求
的值;
(2)證明:當(dāng)
時(shí),
;
(3)若當(dāng)
時(shí),
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.命題“若,則
”的否命題為:“若
,則
”
B.命題“存在,使得
”的否定是:“對(duì)任意
,均有
”
C.命題“角的終邊在第一象限角,則
是銳角”的逆否命題為真命題
D.已知是
上的可導(dǎo)函數(shù),則“
”是“
是函數(shù)
的極值點(diǎn)”的必要不充分條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)(
),
.
(1)求的極值;
(2)當(dāng)時(shí),函數(shù)
的圖象恒在直線
的上方,求實(shí)數(shù)
的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中,底面
為等邊三角形,E,F分別為
,
的中點(diǎn),
,
.
(1)證明:平面
;
(2)求直線與平面
所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),國(guó)家為了鼓勵(lì)高校畢業(yè)生自主創(chuàng)業(yè),出臺(tái)了許多優(yōu)惠政策,以創(chuàng)業(yè)帶動(dòng)就業(yè).某高校畢業(yè)生小張自主創(chuàng)業(yè)從事蘋果的種植,并開(kāi)設(shè)網(wǎng)店進(jìn)行銷售.為了做好蘋果的品控,小張從自己果園的蘋果樹(shù)上,隨機(jī)摘取150個(gè)蘋果測(cè)重(單位:克),其重量分布在區(qū)間內(nèi),根據(jù)統(tǒng)計(jì)的數(shù)據(jù)得到如圖1所示的頻率分布直方圖.
(1)以上述樣本數(shù)據(jù)中頻率作為概率,現(xiàn)一顧客從該果園購(gòu)買了30個(gè)蘋果,求這30個(gè)蘋果中重量在內(nèi)的個(gè)數(shù)
的數(shù)學(xué)期望;
(2)小張的網(wǎng)店為了進(jìn)行蘋果的促銷,推出了“買蘋果,送福袋”的活動(dòng),買家在線參加按圖行進(jìn)贏取福袋的游戲.該游戲的規(guī)則如下:買家點(diǎn)擊拋擲一枚特殊的骰子,每次拋擲的結(jié)果為1或2,且這兩種結(jié)果的概率相同;從出發(fā)格(第0格)開(kāi)始,每擲一次,按照拋擲的結(jié)果,按如圖2所示的路徑向前行進(jìn)一次,若擲出1點(diǎn),即從當(dāng)前位置向前行進(jìn)一格(從第格到第
格,
),若擲出2點(diǎn),即從當(dāng)前位置向前行進(jìn)兩格(從第
格到第
格,
),行進(jìn)至第3l格(獲得福袋)或第32格(謝謝惠顧),游戲結(jié)束.設(shè)買家行進(jìn)至第
格的概率為
,
.
(ⅰ)求、
,并寫(xiě)出用
、
表示
的遞推式;
(ⅱ)求,并說(shuō)明該大學(xué)生網(wǎng)店推出的此款游戲活動(dòng),是更有利于賣家,還是更有利于買家.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)等于2正方形中,點(diǎn)Q是
中點(diǎn),點(diǎn)M,N分別在線段
上移動(dòng)(M不與A,B重合,N不與C,D重合),且
,沿著
將四邊形
折起,使得二面角
為直二面角,則三棱錐
體積的最大值為________;當(dāng)三棱錐
體積最大時(shí),其外接球的表面積為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列是公差為1的等差數(shù)列,
是單調(diào)遞增的等比數(shù)列,且
,
,
.
(1)求和
的通項(xiàng)公式;
(2)設(shè),數(shù)列
的前
項(xiàng)和
,求
;
(3)若數(shù)列的前
項(xiàng)積為
,求
.
(4)數(shù)列滿足
,
,其中
,
,求
.
(5)解決數(shù)列問(wèn)題時(shí),經(jīng)常需要先研究陌生的通項(xiàng)公式,只有先把通項(xiàng)公式研究明白,然后盡可能轉(zhuǎn)化為我們熟悉的數(shù)列問(wèn)題,由此使問(wèn)題得到解決.通過(guò)對(duì)上面(2)(3)(4)問(wèn)題的解決,你認(rèn)為研究陌生數(shù)列的通項(xiàng)問(wèn)題有哪些常用方法,要求介紹兩個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄A過(guò)點(diǎn)
且與直線
相切.
(1)求圓心的軌跡
的方程;
(2)過(guò)的直線與
交于
,
兩點(diǎn),分別過(guò)
,
做
的垂線,垂足為
,
,線段
的中點(diǎn)為
.
①求證:;
②記四邊形,
的面積分別為
,
,若
,求
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com