日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓C: ,左焦點(diǎn) ,且離心率 (Ⅰ)求橢圓C的方程;
          (Ⅱ)若直線l:y=kx+m(k≠0)與橢圓C交于不同的兩點(diǎn)M,N(M,N不是左、右頂點(diǎn)),且以MN為直徑的圓經(jīng)過(guò)橢圓C的右頂點(diǎn)A.求證:直線l過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).

          【答案】(Ⅰ)解:∵橢圓C: , 左焦點(diǎn) ,且離心率 ,
          ∴c= , ,
          ∴a=2,b2=4﹣3=1,
          ∴橢圓C的方程
          (Ⅱ)證明:設(shè)M(x1 , y1 N(x2 , y2),
          右頂點(diǎn)A(2,0)
          ,
          ∵以MN為直徑的圓經(jīng)過(guò)橢圓C的右頂點(diǎn)A,
          ∴(2﹣x2)(2﹣x1)+y1y2=0,
          ∵y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2
          ∴4+(km﹣2)(x1+x2)+(1+k2)x1x2+m2=0
          把y=kx+m代入橢圓方程 ,
          +(kx+m)2=1,
          整理,得( +k2)x2+2kmx+m2﹣1=0,
          所以x1x2= ,x1+x2=﹣ ,②
          把②入①,得
          4+(km﹣2)(﹣ )+(1+k2 +m2
          =(5m2+16km+12k2)÷(1+4k2
          =(m+2k)(5m+6k)÷(1+4k2
          =0
          所以m+2k=0 或者 m+ k=0
          當(dāng)m+2k=0時(shí),直線y=kx﹣2k恒過(guò)點(diǎn)(2,0)和A點(diǎn)重合顯然不符合
          當(dāng)m+ k=0時(shí) 直線恒過(guò)點(diǎn)( ,0)符合題意
          所以該定點(diǎn)坐標(biāo)就是( ,0)
          【解析】(I)由題設(shè)知c= , ,由此能求出橢圓C的方程.(II)設(shè)M(x1 , y1 N(x2 , y2),右頂點(diǎn)A(2,0), ,由以MN為直徑的圓經(jīng)過(guò)橢圓C的右頂點(diǎn)A,知(2﹣x2)(2﹣x1)+y1y2=0,由y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2 , 知4+(km﹣2)(x1+x2)+(1+k2)x1x2+m2=0.把y=kx+m代入橢圓方程 ,得( +k2)x2+2kmx+m2﹣1=0,再由韋達(dá)定理結(jié)合題設(shè)條件能求出該定點(diǎn)坐標(biāo).
          【考點(diǎn)精析】本題主要考查了橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識(shí)點(diǎn),需要掌握橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:才能正確解答此題.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知定點(diǎn)F(1,0),動(dòng)點(diǎn)P(異于原點(diǎn))在y軸上運(yùn)動(dòng),連接FP,過(guò)點(diǎn)P作PM交x軸于點(diǎn)M,并延長(zhǎng)MP到點(diǎn)N,且 ,
          (1)求動(dòng)點(diǎn)N的軌跡C的方程;
          (2)若直線l與動(dòng)點(diǎn)N的軌跡交于A、B兩點(diǎn),若 ,求直線l的斜率k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知f(x)為定義在R上的奇函數(shù),且當(dāng)x≥0時(shí),f(x)=x2﹣(a+4)x+a.
          (1)求實(shí)數(shù)a的值及f(x)的解析式;
          (2)求使得f(x)=x+6成立的x的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖是正方體的平面展開(kāi)圖,在這個(gè)正方體中, ①BM與ED平行;
          ②CN與BE是異面直線;
          ③CN與BM成60°角;
          ④DM與BN垂直.
          以上四個(gè)命題中,正確命題的序號(hào)是(

          A.③
          B.③④
          C.①③
          D.①③④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,有一個(gè)幾何體的三視圖及其尺寸(單位:cm),則該幾何體的表面積和體積分別為(
          A.24πcm2 , 12πcm3
          B.15πcm2 , 12πcm3
          C.24πcm2 , 36πcm3
          D.15πcm2 , 36πcm3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)= ,若|f(x)|≥ax,則a的取值范圍是(
          A.(﹣∞,0]
          B.(﹣∞,1]
          C.[﹣2,1]
          D.[﹣2,0]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】橢圓C: + =1(a>b>0)的離心率為 ,其左焦點(diǎn)到點(diǎn)P(2,1)的距離為 . (Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
          (Ⅱ)若直線l:y=kx+m與橢圓C相交于A,B兩點(diǎn)(A,B不是左右頂點(diǎn)),且以AB為直徑的圓過(guò)橢圓C的右頂點(diǎn).求證:直線l過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB=1,AC=2,BC= ,D,E分別是AC1和BB1的中點(diǎn),則直線DE與平面BB1C1C所成的角為(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為 ,且經(jīng)過(guò)點(diǎn)M(4,1),直線l:y=x+m交橢圓于不同的兩點(diǎn)A,B. (Ⅰ)求橢圓的方程;
          (Ⅱ)求m的取值范圍;
          (Ⅲ)若直線l不過(guò)點(diǎn)M,求證:直線MA、MB與x軸圍成一個(gè)等腰三角形.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案