【題目】某飛機失聯(lián),經(jīng)衛(wèi)星偵查,其最后出現(xiàn)在小島附近,現(xiàn)派出四艘搜救船
,為方便聯(lián)絡(luò),船
始終在以小島
為圓心,100海里為半徑的圓上,船
構(gòu)成正方形編隊展開搜索,小島
在正方形編隊外(如圖).設(shè)小島
到
的距離為
,
,
船到小島
的距離為
.
(1)請分別求關(guān)于
的函數(shù)關(guān)系式
,并分別寫出定義域;
(2)當(dāng)兩艘船之間的距離是多少時搜救范圍最大(即
最大)?
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體中,為三棱柱,且
平面
,四邊形
為平行四邊形,
.
(1)若,求證:
平面
;
(2)若,二面角
的余弦值為
,求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是數(shù)列
的前n項和,滿足
,正項等比數(shù)列
的前n項和為
,且滿足
.
(Ⅰ) 求數(shù)列{an}和{bn}的通項公式; (Ⅱ) 記,求數(shù)列{cn}的前n項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在
上為增函數(shù),且
,
為常數(shù),
.
(1)求的值;(2)若
在
上為單調(diào)函數(shù),求
的取值范圍;
(3)設(shè),若在
上至少存在一個
,使得
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,
是函數(shù)
圖象上的任意兩點,且角
的終邊經(jīng)過點
,若
時,
的 最小值為
.
(1)求函數(shù)的解析式;
(2)當(dāng)時,不等式
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,D,E分別為AC,AB的中點,點F為線段CD上的一點.將△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如圖2.
(1)求證:DE∥平面A1CB;
(2)求證:A1F⊥BE;
(3)線段A1B上是否存在點Q,使A1C⊥平面DEQ?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點
,離心率為
,
分別為左右焦點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若上存在兩個點
,橢圓上有兩個點
滿足
三點共線,
三點共線,且
,求四邊形
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列是首項為0的遞增數(shù)列,
,滿足:對于任意的
總有兩個不同的根,則
的通項公式為_________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com