【題目】如圖,在Rt△ABC中,∠C=90°,D,E分別為AC,AB的中點(diǎn),點(diǎn)F為線段CD上的一點(diǎn).將△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如圖2.
(1)求證:DE∥平面A1CB;
(2)求證:A1F⊥BE;
(3)線段A1B上是否存在點(diǎn)Q,使A1C⊥平面DEQ?說明理由.
【答案】(1)詳見解析(2)詳見解析(3)線段A1B上存在點(diǎn)Q,使得A1C⊥平面DEQ
【解析】
試題分析:(1)D,E分別為AC,AB的中點(diǎn),易證DE∥平面A1CB;(2)由題意可證DE⊥平面A1DC,從而有DE⊥A1F,又A1F⊥CD,可證A1F⊥平面BCDE,問題解決;(3)取A1C,A1B的中點(diǎn)P,Q,則PQ∥BC,平面DEQ即為平面DEP,由DE⊥平面,P是等腰三角形DA1C底邊A1C的中點(diǎn),可證A1C⊥平面DEP,從而A1C⊥平面DEQ
試題解析:(1)證明:因?yàn)?/span>D,E分別為AC,AB的中點(diǎn),
所以DE∥BC.
又因?yàn)?/span>DE平面A1CB,
所以DE∥平面A1CB.
(2)證明:由已知得AC⊥BC且DE∥BC,
所以DE⊥AC.
所以DE⊥A1D,DE⊥CD.所以DE⊥平面A1DC.
而A1F平面A1DC,所以DE⊥A1F.
又因?yàn)?/span>A1F⊥CD,
所以A1F⊥平面BCDE.所以A1F⊥BE.
(3)線段A1B上存在點(diǎn)Q,使A1C⊥平面DEQ.理由如下:
如圖,分別取A1C,A1B的中點(diǎn)P,Q,則PQ∥BC.
又因?yàn)?/span>DE∥BC,所以DE∥PQ.
所以平面DEQ即為平面DEP.
由(2)知,DE⊥平面A1DC,所以DE⊥A1C.
又因?yàn)?/span>P是等腰三角形DA1C底邊A1C的中點(diǎn),
所以A1C⊥DP.所以A1C⊥平面DEP.從而A1C⊥平面DEQ.
故線段A1B上存在點(diǎn)Q,使得A1C⊥平面DEQ.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列,
滿足:
,
,
.
(1)設(shè),求數(shù)列
的通項(xiàng)公式;
(2)設(shè),不等式
恒成立時(shí),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖,已知四棱錐中,底面
為菱形,
平面
,
,
,
分別是
,
的中點(diǎn).
(I)證明:平面
;
(II)取,在線段
上是否存在點(diǎn)
,使得
與平面
所成最大角的正切值為
,若存在,請(qǐng)求出
點(diǎn)的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某飛機(jī)失聯(lián),經(jīng)衛(wèi)星偵查,其最后出現(xiàn)在小島附近,現(xiàn)派出四艘搜救船
,為方便聯(lián)絡(luò),船
始終在以小島
為圓心,100海里為半徑的圓上,船
構(gòu)成正方形編隊(duì)展開搜索,小島
在正方形編隊(duì)外(如圖).設(shè)小島
到
的距離為
,
,
船到小島
的距離為
.
(1)請(qǐng)分別求關(guān)于
的函數(shù)關(guān)系式
,并分別寫出定義域;
(2)當(dāng)兩艘船之間的距離是多少時(shí)搜救范圍最大(即
最大)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)當(dāng)時(shí),證明:函數(shù)
不是奇函數(shù);
(2)判斷函數(shù)的單調(diào)性,并利用函數(shù)單調(diào)性的定義給出證明;
(3)若是奇函數(shù),且
在
時(shí)恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,、
是兩條公路(近似看成兩條直線),
,在
內(nèi)有一紀(jì)念塔
(大小忽略不計(jì)),已知
到直線
、
的距離分別為
、
,
=6千米,
=12千米.現(xiàn)經(jīng)過紀(jì)念塔
修建一條直線型小路,與兩條公路
、
分別交于點(diǎn)
、
.
(1)求紀(jì)念塔到兩條公路交點(diǎn)
處的距離;
(2)若紀(jì)念塔為小路
的中點(diǎn),求小路
的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為
,點(diǎn)
也為拋物線
的焦點(diǎn),過點(diǎn)
的直線
交拋物線
于
兩點(diǎn).
(Ⅰ)若點(diǎn)滿足
,求直線
的方程;
(Ⅱ)為直線
上任意一點(diǎn),過點(diǎn)
作
的垂線交橢圓
于
兩點(diǎn),求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以
,
,
,
,
,
,
分組的頻率分布直方圖如圖.
(I)求直方圖中的值;
(II)求月平均用電量的眾數(shù)和中位數(shù);
(III)在月平均用電量為,
,
,
的四組用戶中,用分層抽樣的方法抽取
戶居民,則月平均用電量在
的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com