【題目】已知函數(shù).
(1)若,求曲線
在點(diǎn)
處的切線方程;
(2)若只有一個零點(diǎn)
,且
,求
的取值范圍.
【答案】(1)(2)
【解析】
(1)根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率,然后由點(diǎn)斜式可得所求切線方程.(2)利用導(dǎo)數(shù)判斷出函數(shù)的單調(diào)性和極值,進(jìn)而得到函數(shù)
的大體圖象,然后根據(jù)函數(shù)的圖象及極值判斷出函數(shù)只有一個零點(diǎn)時參數(shù)
的取值范圍.
(1)當(dāng)時,
,
所以,
故,
又,
所以曲線在點(diǎn)
處的切線方程為
,
即.
(2)由題意得.
(i)當(dāng),即
時,
則當(dāng)或
時,
;當(dāng)
時,
,
所以的極小值為
,
因為函數(shù)的零點(diǎn),且
,
所以當(dāng)函數(shù)只有一個零點(diǎn)時,需滿足,
又,則
或
.
(ii)當(dāng),即
時,則有
,
所以為增函數(shù).
又,
所以只有一個零點(diǎn)
,且
,
所以滿足題意.
(iii)當(dāng),即
時,
則當(dāng)或
時,
;當(dāng)
時,
.
所以的極小值為
,極大值為
,
因為,
,
所以,
又,所以
.
綜上可得或
.
實數(shù)的取值范圍為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.已知曲線C的極坐標(biāo)方程為ρ(1-cos2θ)=8cosθ,直線ρcosθ=1與曲線C相交于M,N兩點(diǎn),直線l過定點(diǎn)P(2,0)且傾斜角為α,l交曲線C于A,B兩點(diǎn).
(1)把曲線C化成直角坐標(biāo)方程,并求|MN|的值;
(2)若|PA|,|MN|,|PB|成等比數(shù)列,求直線l的傾斜角α.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面平面
,
是等腰直角三角形,
,四邊形
是直角梯形,
,
,
,
,
分別為
,
的中點(diǎn).
(1求異面直角與
所成角的大小;
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的離心率為
,左焦點(diǎn)為
,點(diǎn)
是橢圓
上位于
軸上方的一個動點(diǎn),當(dāng)直線
的斜率為1時,
.
(1)求橢圓的方程;
(2)若直線與橢圓
的另外一個交點(diǎn)為
,點(diǎn)
關(guān)于
軸的對稱點(diǎn)為
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸的負(fù)半軸的拋物線截直線y=x+所得的弦長|P1P2|=4
,求此拋物線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為降低汽車尾氣排放量,某工廠設(shè)計制造了、
兩種不同型號的節(jié)排器,規(guī)定性能質(zhì)量評分在
的為優(yōu)質(zhì)品.現(xiàn)從該廠生產(chǎn)的
、
兩種型號的節(jié)排器中,分別隨機(jī)抽取500件產(chǎn)品進(jìn)行性能質(zhì)量評分,并將評分分別分成以下六個組;
,
,
,
,
,
,繪制成如圖所示的頻率分布直方圖:
(1)設(shè)500件型產(chǎn)品性能質(zhì)量評分的中位數(shù)為
,直接寫出
所在的分組區(qū)間;
(2)請完成下面的列聯(lián)表(單位:件)(把有關(guān)結(jié)果直接填入下面的表格中);
|
| 總計 | |
優(yōu)質(zhì)品 | |||
非優(yōu)質(zhì)品 | |||
總計 | 500 | 500 | 1000 |
(3)根據(jù)(2)中的列聯(lián)表,能否有的把握認(rèn)為
、
兩種不同型號的節(jié)排器性能質(zhì)量有差異?
附:,其中
.
0.10 | 0.010 | 0.001 | |
2.706 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖在四邊形PBCD中,
,
,
,
,
,沿AB把三角形PAB折起,使P,D兩點(diǎn)的距離為10,得到如圖
所示圖形.
Ⅰ
求證:平面
平面PAC;
Ⅱ
若點(diǎn)E是PD的中點(diǎn),求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,角
的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊與
軸的非負(fù)半軸重合,終邊交單位圓
于點(diǎn)
,且
,則
的值是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com