【題目】設(shè)兩條直線的方程分別為x+y+a=0和 x+y+b=0,已知a、b是關(guān)于x的方程x2+x+c=0的兩個實(shí)根,且0≤c≤ ,則這兩條直線間距離的最大值和最小值分別為( )
A.
B.
C.
D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{}中,
,且
對任意正整數(shù)都成立,數(shù)列{
}的前n項(xiàng)和為Sn。
(1)若,且
,求a;
(2)是否存在實(shí)數(shù)k,使數(shù)列{}是公比不為1的等比數(shù)列,且任意相鄰三項(xiàng)
按某順序排列后成等差數(shù)列,若存在,求出所有k值,若不存在,請說明理由;
(3)若。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC內(nèi)一點(diǎn)O滿足 =
,若△ABC內(nèi)任意投一個點(diǎn),則該點(diǎn)△OAC內(nèi)的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是等差數(shù)列,滿足a1=3,a4=12,數(shù)列{bn}滿足b1=4,b4=20,且{bn﹣an}為等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為檢驗(yàn)寒假學(xué)生自主學(xué)習(xí)的效果,年級部對某班50名學(xué)生各科的檢測成績進(jìn)行了統(tǒng)計,下面是政治成績的頻率分布直方圖,其中成績分組區(qū)間是: ,
,
,
,
,
.
(1)求圖中的值及平均成績;
(2)從分?jǐn)?shù)在中選5人記為
,從分?jǐn)?shù)在
中選3人,記為
,8人組成一個學(xué)習(xí)小組.現(xiàn)從這5人和3人中各選1人做為組長,求
被選中且
未被選中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列求導(dǎo)正確的是( )
A.(x+ )′=1+
B.(log2x)′=
C.(3x)′=3xlog3x
D.(x2cosx)′=﹣2xsinx
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的極坐標(biāo)方程為,圓
的參數(shù)方程為
(其中
為參數(shù)).
(Ⅰ)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)求圓上的點(diǎn)到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 的二項(xiàng)展開式中所有奇數(shù)項(xiàng)的系數(shù)之和為512,
(1)求展開式的所有有理項(xiàng)(指數(shù)為整數(shù)).
(2)求(1﹣x)3+(1﹣x)4+…+(1﹣x)n展開式中x2項(xiàng)的系數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)偶函數(shù)f(x)的定義域?yàn)閇﹣4,0)∪(0,4],若當(dāng)x∈(0,4]時,f(x)=log2x,
(1)求出函數(shù)在定義域[﹣4,0)∪(0,4]的解析式;
(2)求不等式xf(x)<0得解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com