數(shù)學(xué)英語物理化學(xué) 生物地理
數(shù)學(xué)英語已回答習題未回答習題題目匯總試卷匯總
【題目】設(shè)偶函數(shù)f(x)的定義域為[﹣4,0)∪(0,4],若當x∈(0,4]時,f(x)=log2x,(1)求出函數(shù)在定義域[﹣4,0)∪(0,4]的解析式;(2)求不等式xf(x)<0得解集.
【答案】(1)解:由題意知:f(x)是偶函數(shù),即f(﹣x)=f(x),
當x∈(0,4]時,f(x)=log2x,
那么:當x∈[﹣4,0)時,則﹣x∈(0,4],
可得:f(﹣x)=log2﹣x,
∵f(﹣x)=f(x),
∴f(x)=log2﹣x,
故得f(x)的函數(shù)解析式為:
(2)解:當0<x≤4時,f(x)=log2x,
∵0<x<1時,f(x)<0,
不等式xf(x)<0恒成立.
當﹣4≤x<0時,f(x)=log2﹣x,
∵﹣4≤x<﹣1時,f(x)>0,
綜上所述:不等式的解集為(﹣4,﹣1)∪(0,1)
【解析】(1)根據(jù)f(x)是偶函數(shù),f(﹣x)=f(x),當x∈(0,4]時,f(x)=log2x,可求x∈[﹣4,0)的解析式.(2)根據(jù)定義域的不同,解析式不同,分類解不等式即可.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(cosx,sinx), =( sinx,sinx),x∈R設(shè)函數(shù)f(x)= ﹣ (1)求函數(shù)f(x)的最小正周期;(2)求函數(shù)f(x)在[0, ]上的最大值和最小值.
【題目】某公司欲制作容積為16米3 , 高為1米的無蓋長方體容器,已知該容器的底面造價是每平方米1000元,側(cè)面造價是每平方米500元,記該容器底面一邊的長為x米,容器的總造價為y元.(1)試用x表示y;(2)求y的最小值及此時該容器的底面邊長.
【題目】在△ABC中,A,B的坐標分別是 ,點G是△ABC的重心,y軸上一點M滿足GM∥AB,且|MC|=|MB|. (Ⅰ)求△ABC的頂點C的軌跡E的方程;(Ⅱ)直線l:y=kx+m與軌跡E相交于P,Q兩點,若在軌跡E上存在點R,使四邊形OPRQ為平行四邊形(其中O為坐標原點),求m的取值范圍.
【題目】從裝有個紅球和個黒球的口袋內(nèi)任取個球,那么互斥而不對立的兩個事件是( )A.至少有一個黒球與都是黒球B.至少有一個黑球與都是紅球C.至少有一個黒球與至少有個紅球D.恰有個黒球與恰有個黒球
【題目】已知f(x)=x2+(2+lga)x+lgb,f(﹣1)=﹣2且f(x)≥2x恒成立,求a、b的值.
【題目】一個總體中含有4個個體,從中抽取一個容量為2的樣本,說明為什么在抽取過程中每個個體被抽取的概率都相等
【題目】已知函數(shù)f(x)=2ax﹣2,g(x)=a(x﹣2a)(x+2﹣a),a∈R且a≠0.(1)若{x|f(x)g(x)=0}={1,2},求實數(shù)a的值;(2)若{x|f(x)<0或g(x)<0}=R,求實數(shù)a的取值范圍.
【題目】如圖是甲、乙兩名籃球運動員2012年賽季每場比賽得分的莖葉圖,則甲、乙兩人比賽得分的中位數(shù)之和是
百度致信 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)