【題目】已知直線:
,
:
,動(dòng)點(diǎn)
分別在直線
,
上移動(dòng),
,
是線段
的中點(diǎn).
(1)求點(diǎn)的軌跡
的方程;
(2)設(shè)不經(jīng)過坐標(biāo)原點(diǎn)且斜率為
的直線
交軌跡
于點(diǎn)
,點(diǎn)
滿足
,若點(diǎn)
在軌跡
上,求四邊形
的面積.
【答案】(I). (II)見解析.
【解析】試題分析:(1)根據(jù)條件設(shè),
,
,即
. 設(shè)
,由中點(diǎn)坐標(biāo)公式
消去參數(shù)m,n得
.
(2)設(shè)直線的方程為
,
,
,
.將
代入
,整理得
.則
,
. 因?yàn)?/span>
,可得R(
,
. 由
在橢圓上,有
,化簡得
. 從而整理可得
. 可求得四邊形
的面積.
試題解析:(1)根據(jù)條件可設(shè),
,由
,得:
.
設(shè),則
得
將①和②代入中并化簡得:
.
所以點(diǎn)的軌跡
的方程為
.
(2)設(shè)直線的方程為
,
,
,
.
將代入
,整理得
.
則 ,
.
.
因?yàn)?/span>,則有:
,
.
因?yàn)?/span>在橢圓上,
,
化簡得: .
所以,
,
因?yàn)?/span>
.
又點(diǎn)到
的距離為
.
由,可知四邊形
為平行四邊形,
.
拓展: 此題結(jié)論可推廣到更一般情形:
第(Ⅰ))題中, 直線、
只要不垂直,軌跡均為橢圓,
、
垂直時(shí),軌跡為圓;
第(Ⅱ)題中結(jié)論可推廣到更一般情形:
設(shè)不經(jīng)過坐標(biāo)原點(diǎn)且斜率為
的直線
交橢圓:
于點(diǎn)
、
,點(diǎn)
滿足
. 若點(diǎn)
在橢圓上,則四邊形OPRQ(或
)的面積為定值。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+bx+c(b,c∈R),對任意的x∈R,恒有f′(x)≤f(x).
(1)證明:當(dāng)x≥0時(shí),f(x)≤(x+c)2;
(2)若對滿足題設(shè)條件的任意b,c,不等式f(c)-f(b)≤M(c2-b2)恒成立,求M的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.
(1)若a=-2,求B∩A,B∩(UA);(2)若A∪B=A,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)="xln" x–ax2+(2a–1)x,aR.
(Ⅰ)令g(x)=f'(x),求g(x)的單調(diào)區(qū)間;
(Ⅱ)已知f(x)在x=1處取得極大值.求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中國詩詞大會》(第二季)亮點(diǎn)頗多,十場比賽每場都有一首特別設(shè)計(jì)的開場詩詞,在聲光舞美的配合下,百人團(tuán)齊聲朗誦,別有韻味.若《將進(jìn)酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另確定的兩首詩詞排在后六場,且《將進(jìn)酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰且均不排在最后,則后六場的排法有( )
A. 種 B.
種 C.
種 D.
種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象與
軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為
,且圖象過點(diǎn)
(1)求的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)將函數(shù)的圖象向右平移
個(gè)單位,再將圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)
的圖象,若關(guān)于
的方程
,在區(qū)間
上有且只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】紅隊(duì)隊(duì)員甲、乙、丙與藍(lán)隊(duì)隊(duì)員,
,
進(jìn)行圍棋比賽,甲對
,乙對
,丙對
各一盤.已知甲勝
、乙勝
、丙勝
的概率分別為0.6,0.5,0.5,假設(shè)各盤比賽結(jié)果相互獨(dú)立,則紅隊(duì)至少兩名隊(duì)員獲勝的概率是____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,點(diǎn)
到兩點(diǎn)
的距離之和為4,設(shè)點(diǎn)
的軌跡為
,直線
與
交于
兩點(diǎn)。
(Ⅰ)寫出的方程;
(Ⅱ)若,求
的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓經(jīng)過
兩點(diǎn),且圓心
在直線
上.
(1)求圓的方程;
(2)已知過點(diǎn)的直線
與圓
相交截得的弦長為
,求直線
的方程;
(3)已知點(diǎn),在平面內(nèi)是否存在異于點(diǎn)
的定點(diǎn)
,對于圓
上的任意動(dòng)點(diǎn)
,都有
為定值?若存在求出定點(diǎn)
的坐標(biāo),若不存在說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com