日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的離心率為,橢圓上異于長軸頂點(diǎn)的任意點(diǎn)與左右兩焦點(diǎn)構(gòu)成的三角形中面積的最大值為.
          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)已知點(diǎn),連接與橢圓的另一交點(diǎn)記為,若與橢圓相切時、不重合,連接與橢圓的另一交點(diǎn)記為,求的取值范圍.
          (1);(2).

          試題分析:(1)先利用已知條件列舉出有關(guān)、的方程組,結(jié)合三者之間滿足的勾股關(guān)系求出、的值,從而確定橢圓的方程;(2)設(shè)直線的方程分別為以及,將兩條直線方程與橢圓方程聯(lián)立,結(jié)合韋達(dá)定理得到點(diǎn)與點(diǎn)之間的關(guān)系(關(guān)于軸對稱),從而得到兩點(diǎn)坐標(biāo)之間的關(guān)系,最后將利用點(diǎn)的坐標(biāo)進(jìn)行表示,注意到坐標(biāo)的取值范圍,然后利用二次函數(shù)求出的取值范圍.
          (1)由題可知:,
          解得:,,
          故橢圓的方程為:;
          (2)不妨設(shè)、、,
          由題意可知直線的斜率是存在的,故設(shè)直線的斜率為,直線的斜率為
          的方程為: 代入橢圓方程,得
          ,
          ,代入解得:,
          的方程為:代入橢圓方程,得
          ,
          ,,代入解得:,
          ,又、不重合,,

          ,
          .
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知二次函數(shù)f(x)=ax2+bx+c (a≠0)且滿足f(-1)=0,對任意實(shí)數(shù)x,恒有f(x)-x≥0,并且當(dāng)x∈(0,2)時,f(x)≤.
          (1)求f(1)的值;
          (2)證明:a>0,c>0;
          (3)當(dāng)x∈[-1,1]時,函數(shù)g(x)=f(x)-mx (x∈R)是單調(diào)函數(shù),求證:m≤0或m≥1.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)是偶函數(shù)。
          (1)求的值;
          (2)設(shè)函數(shù),其中實(shí)數(shù)。若函數(shù)的圖象有且只有一個交點(diǎn),求實(shí)數(shù)的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)定義域?yàn)镽+的函數(shù)f(x),對任意的正實(shí)數(shù)x,y,都有f(xy)=f(x)+f(y),且當(dāng)x>1時有f(x)>0.
          ①求f(1)的值;
          ②判斷f(x)在(0,+∞)上的單調(diào)性,并證明.
          ③若f(
          1
          a
          )=-1,求滿足不等式f(1-x-2x2)≤1的x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知二次函數(shù)的頂點(diǎn)坐標(biāo)為,且的兩個實(shí)根之差等于,__________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          若函數(shù)f(x)=x2-ax-a在區(qū)間[0,2]上的最大值為1,則實(shí)數(shù)a等于(  )
          A.-1B.1C.2D.-2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          如圖,已知二次函數(shù)y=ax2+bx+c(a,b,c為實(shí)數(shù),a≠0)的圖像過點(diǎn)C(t,2),且與x軸交于A,B兩點(diǎn),若AC⊥BC,則實(shí)數(shù)a的值為________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知函數(shù)對任意的滿足,且當(dāng)時,.若有4個零點(diǎn),則實(shí)數(shù)的取值范圍是   

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知函數(shù)f(x)=2mx2-2(4-m)x+1,g(x)=mx,若對于任一實(shí)數(shù)x,f(x)與g(x)至少有一個為正數(shù),則實(shí)數(shù)m的取值范圍是(  )
          A.(0,2)B.(0,8)C.(2,8)D.(-∞,0)

          查看答案和解析>>

          同步練習(xí)冊答案