【題目】蜂巢是由工蜂分泌蜂蠟建成的從正面看,蜂巢口是由許多正六邊形的中空柱狀體連接而成,中空柱狀體的底部是由三個全等的菱形面構成,菱形的一個角度是,這樣的設計含有深刻的數(shù)學原理、我國著名數(shù)學家華羅庚曾專門研究蜂巢的結構著有《談談與蜂房結構有關的數(shù)學問題》.用數(shù)學的眼光去看蜂巢的結構,如圖,在六棱柱
的三個頂點
,
,
處分別用平面
,平面
,平面
截掉三個相等的三棱錐
,
,
,平面
,平面
,平面
交于點
,就形成了蜂巢的結構.如圖,以下四個結論①
;②
;③
,
,
,
四點共面;④異面直線
與
所成角的大小為
.其中正確的個數(shù)是( ).
A.1B.2C.3D.4
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中
為常數(shù).
(1)若直線是曲線
的一條切線,求實數(shù)
的值;
(2)當時,若函數(shù)
在
上有兩個零點.求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐中,
為正三角形,平面
平面
,E為
的中點,
,
,
.
(Ⅰ)求證:平面平面
;
(Ⅱ)求直線與平面
所成角的正弦值;
(Ⅲ)在棱上是否存在點M,使得
平面
?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“互聯(lián)網(wǎng)”是“智慧城市”的重要內(nèi)士,
市在智慧城市的建設中,為方便市民使用互聯(lián)網(wǎng),在主城區(qū)覆蓋了免費
.為了解免費
在
市的使用情況,調(diào)査機構借助網(wǎng)絡進行了問卷調(diào)查,并從參與調(diào)査的網(wǎng)友中抽取了
人進行抽樣分析,得到如下列聯(lián)表(單位:人):
經(jīng)常使用免費WiFi | 偶爾或不用免費WiFi | 合計 | |
45歲及以下 | 70 | 30 | 100 |
45歲以上 | 60 | 40 | 100 |
合計 | 130 | 70 | 200 |
(1)根據(jù)以上數(shù)據(jù),判斷是否有的把握認為
市使用免費
的情況與年齡有關;
(2)將頻率視為概率,現(xiàn)從該市歲以上的市民中用隨機抽樣的方法每次抽取
人,共抽取
次.記被抽取的
人中“偶爾或不用免費
”的人數(shù)為
,若每次抽取的結果是相互獨立的,求
的分布列,數(shù)學期望
和方差
.
附:,其中
.
0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線l:
,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線
.
(Ⅰ)求曲線C被直線l截得的弦長;
(Ⅱ)與直線l垂直的直線EF與曲線C相切于點Q,求點Q的直角坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高中為了了解高三學生每天自主參加體育鍛煉的情況,隨機抽取了100名學生進行調(diào)查,其中女生有55名.下面是根據(jù)調(diào)查結果繪制的學生自主參加體育鍛煉時間的頻率分布直方圖:
將每天自主參加體育鍛煉時間不低于40分鐘的學生稱為體育健康類學生,已知體育健康
類學生中有10名女生.
(1)根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此資料你是否有
的把握認為達到體育健康
類學生與性別有關?
非體育健康 | 體育健康 | 合計 | |
男生 | |||
女生 | |||
合計 |
(2)將每天自主參加體育鍛煉時間不低于50分鐘的學生稱為體育健康類學生,已知體育健康
類學生中有2名女生,若從體育健康
類學生中任意選取2人,求至少有1名女生的概率.
附:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com