日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】橢圓C: =1(a>b>0)的中心在原點,焦點在x軸上,焦距為2,且與橢圓x2+ =1有相同離心率,直線l:y=kx+m與橢圓C交于不同的A,B兩點.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)若在橢圓C上存在點Q,滿足 ,(O為坐標原點),求實數(shù)λ取值范圍.

          【答案】解:( I)由已知可 解得 ,∴b=1.
          所求橢圓C的方程
          ( II)由 得(1+2k2)x2+4kmx+2m2﹣2=0,
          ∴△=16k2m2﹣4(1+2k2)(2m2﹣2)=8(1+2k2﹣m2).
          由直線直線l與橢圓C交于不同的A,B兩點,有△>0,∴1+2k2>m2
          設點A(x1 , y1),B(x2 , y2),則
          于是
          當m=0時,易知點A,B關于原點對稱,則λ=0;
          當m≠0時,易知點A,B不關于原點對稱,則λ≠0.
          ,得
          ∵Q點在橢圓上,∴
          化簡得4m2(1+2k2)=λ2(1+2k22
          ∵1+2k2≠0,∴4m22(1+2k2).
          由①②兩式可得λ2<4,∴﹣2<λ<2且λ≠0.
          綜上可得實數(shù)λ的取值范圍是﹣2<λ<2
          【解析】(Ⅰ)利用已知條件列出橢圓幾何量的方程組,求解a,b,即可求橢圓C的方程;(Ⅱ)聯(lián)立直線與橢圓方程,利用韋達定理,結合向量關系,推出結果即可.
          【考點精析】解答此題的關鍵在于理解橢圓的標準方程的相關知識,掌握橢圓標準方程焦點在x軸:,焦點在y軸:

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù);

          (1)若函數(shù)上為增函數(shù),求正實數(shù)的取值范圍;

          (2)當時,求函數(shù)上的最值;

          (3)當時,對大于1的任意正整數(shù),試比較的大小關系.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=a(x﹣1)2+lnx+1,g(x)=f(x)﹣x,其中a∈R.
          (Ⅰ)當a=﹣ 時,求函數(shù)f(x)的極值;
          (Ⅱ)當a>0時,求函數(shù)g(x)的單調區(qū)間;
          (Ⅲ)當x∈[1,+∞)時,若y=f(x)圖象上的點都在 所表示的平面區(qū)域內,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=a(x﹣1)2+lnx+1,g(x)=f(x)﹣x,其中a∈R.
          (Ⅰ)當a=﹣ 時,求函數(shù)f(x)的極值;
          (Ⅱ)當a>0時,求函數(shù)g(x)的單調區(qū)間;
          (Ⅲ)當x∈[1,+∞)時,若y=f(x)圖象上的點都在 所表示的平面區(qū)域內,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設f(x)=sin( x﹣ )﹣2cos2 x+1.
          (1)求f(x)的最小正周期;
          (2)若函數(shù)y=f(x)與y=g(x)的圖象關于直線x=1對稱,求當x∈[0, ]時,y=g(x)的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)fx)=9x﹣2a3x+3:

          (1)若a=1,x[0,1]時,求fx)的值域;

          (2)當x[﹣1,1]時,求fx)的最小值ha);

          (3)是否存在實數(shù)m、n,同時滿足下列條件:①n>m>3;②當h(a)的定義域為[m,n]時,其值域為[m2,n2],若存在,求出m、n的值,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在點處的切線.

          (1)求證: ;

          (2)設,其中.若恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在斜三棱柱ABC﹣A1B1C1中,底面ABC是正三角形,E是AB中點,A1E⊥平面ABC.
          (I)證明:BC1∥平面 A1EC;
          (II)若A1A⊥A1B,且AB=2.
          ①求點B到平面ACC1A1的距離;
          ②求直線CB1與平面ACC1A1所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】、是雙曲線的左、右焦點,過的直線與雙曲線的左右兩支分別交于點.若為等邊三角形,則雙曲線的離心率為_________

          查看答案和解析>>

          同步練習冊答案