日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分14分)
          在平面直角坐標系中,橢圓的離心率為,直線被橢圓截得的線段長為.
          (Ⅰ)求橢圓的方程;
          (Ⅱ)過原點的直線與橢圓交于兩點(不是橢圓的頂點).點在橢圓上,且,直線軸、軸分別交于兩點.
          (i)設直線的斜率分別為,證明存在常數(shù)使得,并求出的值;
          (ii)求面積的最大值.
          (1).(2)(。┐嬖诔(shù)使得結論成立.(ⅱ).

          試題分析:(1)首先由題意得到,即.
          代入可得,
          ,可得.得解.
          (2)(。┳⒁鈴拇_定的表達式入手,探求使成立的.
          ,則,
          得到,
          根據(jù)直線BD的方程為,
          ,得,即.得到.
          ,作出結論.
          (ⅱ)直線BD的方程,
          從確定的面積表達式入手,應用基本不等式得解.
          試題解析:(1)由題意知,可得.
          橢圓C的方程可化簡為.
          代入可得,
          因此,可得.
          因此,
          所以橢圓C的方程為.
          (2)(。┰O,則,
          因為直線AB的斜率,
          ,所以直線AD的斜率,
          設直線AD的方程為
          由題意知,
          ,可得.
          所以,
          因此,
          由題意知,
          所以,
          所以直線BD的方程為,
          ,得,即.
          可得.
          所以,即.
          因此存在常數(shù)使得結論成立.
          (ⅱ)直線BD的方程,
          ,得,即,
          由(。┲
          可得的面積,
          因為,當且僅當時等號成立,
          此時S取得最大值
          所以的面積的最大值為.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源:不詳 題型:解答題

          中國跳水運動員進行10m跳臺跳水訓練時,身體(看成一點)在空中的運動路線為如圖所示坐標系下經(jīng)過原點O的一條拋物線(圖中標出的數(shù)據(jù)為已知條件).在跳某個規(guī)定動作時,正常情況下,該運動員在空中的最高處距水面10
          2
          3
          m,入水處距池邊的距離為4m,同時,運動員在距水面高度為5m或5m以上時,必須完成規(guī)定的翻騰動作,并調(diào)整好入水姿勢,否則就會出現(xiàn)失誤.
          (1)求這條拋物線的解析式.
          (2)在某次試跳中,測得運動員在空中的運動路線是(1)中的拋物線,且運動員在空中調(diào)整好入水姿勢時,距池邊的水平距離為3
          3
          5
          m,問此次跳水會不會失誤?并通過計算說明理由.
          (3)要使此次跳水不至于失誤,該運動員按(1)中拋物線運行,且運動員在空中調(diào)整好入水姿勢時,距池邊的水平距離至多應為多少?

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          (本小題滿分12分)
          已知曲線上的點到點的距離比它到直線的距離小2.
          (1)求曲線的方程;
          (2)曲線在點處的切線軸交于點.直線分別與直線軸交于點,以為直徑作圓,過點作圓的切線,切點為,試探究:當點在曲線上運動(點與原點不重合)時,線段的長度是否發(fā)生變化?證明你的結論.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:單選題

          過拋物線的焦點作直線與拋物線交于A、B兩點,以AB為直徑的圓與拋物線的準線的位置關系是( 。
          A.相離B.相切C.相交D.不確定

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          如圖,直線y=
          1
          2
          x與拋物線y=
          1
          8
          x2-4交于A、B兩點,線段AB的垂直平分線與直線y=-5交于Q點.
          (1)求點Q的坐標;
          (2)當P為拋物線上位于線段AB下方(含A、B)的動點時,求△OPQ面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          如圖,已知直線l與拋物線相切于點P(2,1),且與軸交于點A,定點B的坐標為(2,0) .

          (1)若動點M滿足,求點M的軌跡C;
          (2)若過點B的直線l(斜率不等于零)與(I)中的軌跡C交于不同的兩點E、F(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:填空題

          拋物線的焦點為,點為該拋物線上的動點,又點,
          的取值范圍是     

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          如圖,已知橢圓,直線的方程為,過右焦點的直線與橢圓交于異于左頂點兩點,直線交直線分別于點,
          (1)當時,求此時直線的方程;
          (2)試問兩點的縱坐標之積是否為定值?若是,求出該定值;若不是,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:填空題

          過點作斜率為的直線與橢圓相交于,若是線段的中點,則橢圓的離心率為     

          查看答案和解析>>

          同步練習冊答案