【題目】某電腦公司有5名產(chǎn)品推銷員,其工作年限與年推銷金額的數(shù)據(jù)如表:
推銷員編號 | 1 | 2 | 3 | 4 | 5 |
工作年限 | 3 | 5 | 6 | 7 | 9 |
推銷金額 | 2 | 3 | 3 | 4 | 5 |
求年推銷金額y關于工作年限x的線性回歸方程;
判斷變量x與y之間是正相關還是負相關;
若第6名推銷員的工作年限是11年,試估計他的年推銷金額.
(參考數(shù)據(jù),
,
參考公式:線性回歸方程中
,
,其中
為樣本平均數(shù))
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足
,
.
(Ⅰ)證明:是等比數(shù)列;
(Ⅱ)證明:數(shù)列中的任意三項不為等差數(shù)列;
(Ⅲ)證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C的極坐標方程是ρ=2,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為(t為參數(shù)).
(1)寫出直線l的普通方程與曲線C的直角坐標方程;
(2)設曲線C經(jīng)過伸縮變換得到曲線,設M(x,y)為
上任意一點,求
的最小值,并求相應的點M的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是某市年
月
日至
日的空氣質量指數(shù)趨勢圖,某人隨機選擇
年
月
日至
月
日中的某一天到達該市,并停留
天.
(1)求此人到達當日空氣質量指數(shù)大于的概率;
(2)設是此人停留期間空氣質量指數(shù)小于
的天數(shù),求
的分布列與數(shù)學期望;
(3)由圖判斷從哪天開始連續(xù)三天的空氣質量指數(shù)方差最大?(結論不要求證明)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)判斷函數(shù)的奇偶性,并加以證明;
(2)用定義證明在
上是減函數(shù);
(3)函數(shù)在
上是單調增函數(shù)還是單調減函數(shù)?(直接寫出答案,不要求寫證明過程).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體ABCD-A′B′C′D′的棱長為a,連接A′C′,A′D,A′B,BD,BC′,C′D,得到一個三棱錐.求:
(1)三棱錐A′-BC′D的表面積與正方體表面積的比值;
(2)三棱錐A′-BC′D的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某貧困地區(qū)有1500戶居民,其中平原地區(qū)1050戶,山區(qū)450戶,為調查該地區(qū)2017年家庭收入情況,從而更好地實施“精準扶貧”,采用分層抽樣的方法,收集了150戶家庭2017年年收入的樣本數(shù)據(jù)(單位:萬元)
(I)應收集多少戶山區(qū)家庭的樣本數(shù)據(jù)?
(Ⅱ)根據(jù)這150個樣本數(shù)據(jù),得到2017年家庭收入的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為,
,
,
,
,
.如果將頻率率視為概率,估計該地區(qū)2017年家庭收入超過1.5萬元的概率;
(Ⅲ)樣本數(shù)據(jù)中,由5戶山區(qū)家庭的年收入超過2萬元,請完成2017年家庭收入與地區(qū)的列聯(lián)表,并判斷是否有90%的把握認為“該地區(qū)2017年家庭年收入與地區(qū)有關”?
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
超過2萬元 | 不超過2萬元 | 總計 | |
平原地區(qū) | |||
山區(qū) | 5 | ||
總計 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果函數(shù)在
上存在
滿足
,
,則稱函數(shù)
是在
上的“雙中值函數(shù)”,已知函數(shù)
是
上的“雙中值函數(shù)”,則函數(shù)
的取值范圍是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com