如圖,正三棱柱ABC-A'B'C'中,D是BC的中點(diǎn),AA'=AB=2
(1)求證:ADB'D;
(2)求三棱錐A'-AB'D的體積。
(1)詳見解析;(2)體積.
解析試題分析:(1)在立體幾何中證明直線與平面垂直,一般有以下兩種方法:一是通過線面垂直來證明;二是用勾股定理來證明.在本題中,證明哪條直線垂直哪個(gè)平面?在正三棱柱中,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3a/5/nqyik1.png" style="vertical-align:middle;" />為
中點(diǎn),所以
,由此可得
平面
,從而
.另外,求出
三邊的長(zhǎng),用勾股定理也可證得.
(2)求三棱錐的體積一定要注意頂點(diǎn)的選擇.思路一、連結(jié)交
于點(diǎn)
,則
為
的中點(diǎn),所以點(diǎn)
到平面
的距離等于點(diǎn)
到平面
的距離,所以可轉(zhuǎn)化為求三棱錐
即三棱錐
的體積,這樣求就很簡(jiǎn)單了.思路二、轉(zhuǎn)化為求三棱錐
的體積.
試題解析:(1)法一、在正三棱柱中,平面
平面
,平面
平面
,
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/22/6/t6u0g.png" style="vertical-align:middle;" />,平面,所以
平面
,
又平面
,所以
. 6分
法二、易得由勾股定理得
. 6分
(2)法一、.
法二、. 12分
考點(diǎn):1、直線與直線垂直的判定;2、三棱錐的體積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,為圓
的直徑,點(diǎn)
.
在圓
上,且
,矩形
所在的平面和圓
所在的平面互相垂直,且
,
.
(1)設(shè)的中點(diǎn)為
,求證:
平面
;
(2)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在多面體ABCDEF中,底面ABCD是邊長(zhǎng)為2的正方形,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分別是CE和CF的中點(diǎn).
(Ⅰ)求證:AC⊥平面BDEF;
(Ⅱ)求證:平面BDGH//平面AEF;
(Ⅲ)求多面體ABCDEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,正三棱柱ABC—A1B1C1的各棱長(zhǎng)都相等,M、E分別是和AB1的中點(diǎn),點(diǎn)F在BC上且滿足BF∶FC=1∶3.
(1)求證:BB1∥平面EFM;
(2)求四面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四棱錐的三視圖和直觀圖如下圖所示,其中正視圖、側(cè)視圖是直角三角形,俯視圖是有一條對(duì)角線的正方形.
是側(cè)棱
上的動(dòng)點(diǎn).
(1)求證:;
(2)若為
的中點(diǎn),求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖所示,矩形的對(duì)角線交于點(diǎn)G,AD⊥平面
,
,
,
為
上的點(diǎn),且BF⊥平面ACE
(1)求證:平面
;
(2)求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com