日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,正三棱柱ABC-A'B'C'中,D是BC的中點(diǎn),AA'=AB=2

          (1)求證:ADB'D;
          (2)求三棱錐A'-AB'D的體積。

          (1)詳見解析;(2)體積.

          解析試題分析:(1)在立體幾何中證明直線與平面垂直,一般有以下兩種方法:一是通過線面垂直來證明;二是用勾股定理來證明.在本題中,證明哪條直線垂直哪個(gè)平面?在正三棱柱中,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3a/5/nqyik1.png" style="vertical-align:middle;" />為中點(diǎn),所以,由此可得平面,從而.另外,求出三邊的長(zhǎng),用勾股定理也可證得.
          (2)求三棱錐的體積一定要注意頂點(diǎn)的選擇.思路一、連結(jié)于點(diǎn),則的中點(diǎn),所以點(diǎn)到平面的距離等于點(diǎn)到平面的距離,所以可轉(zhuǎn)化為求三棱錐即三棱錐的體積,這樣求就很簡(jiǎn)單了.思路二、轉(zhuǎn)化為求三棱錐的體積.
          試題解析:(1)法一、在正三棱柱中,平面平面,平面平面,
          又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/22/6/t6u0g.png" style="vertical-align:middle;" />,平面,所以平面
          平面,所以.            6分
          法二、易得由勾股定理得.         6分
          (2)法一、.
          法二、.         12分

          考點(diǎn):1、直線與直線垂直的判定;2、三棱錐的體積.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,為圓的直徑,點(diǎn)在圓上,且,矩形所在的平面和圓所在的平面互相垂直,且,.

          (1)設(shè)的中點(diǎn)為,求證:平面;
          (2)求四棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在直三棱柱中, ,,求:

          (1)異面直線所成角的大小;
          (2)四棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在多面體ABCDEF中,底面ABCD是邊長(zhǎng)為2的正方形,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分別是CE和CF的中點(diǎn).

          (Ⅰ)求證:AC⊥平面BDEF;
          (Ⅱ)求證:平面BDGH//平面AEF;
          (Ⅲ)求多面體ABCDEF的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,正三棱柱ABC—A1B1C1的各棱長(zhǎng)都相等,M、E分別是和AB1的中點(diǎn),點(diǎn)F在BC上且滿足BF∶FC=1∶3.

          (1)求證:BB1∥平面EFM;
          (2)求四面體的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知四棱錐的三視圖和直觀圖如下圖所示,其中正視圖、側(cè)視圖是直角三角形,俯視圖是有一條對(duì)角線的正方形.是側(cè)棱上的動(dòng)點(diǎn).

          (1)求證:;
          (2)若的中點(diǎn),求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分12分)如圖所示,矩形的對(duì)角線交于點(diǎn)G,AD⊥平面,上的點(diǎn),且BF⊥平面ACE

          (1)求證:平面;
          (2)求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在如圖的多面體中,平面,,,,,的中點(diǎn).

          (1)求證:平面;
          (2)求證:;
          (3)求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,四邊形ABCD為梯形,,求圖中陰影部分繞AB旋轉(zhuǎn)一周形成的幾何體的表面積和體積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案