分析 欲證明AM=AN,因?yàn)镻M=PN,只要證明PA=PB即可,只要證明△PAN≌△PBM.
解答 證明:在△PAN和△PBM中,
$\left\{\begin{array}{l}{∠P=∠P(公共角)}\\{PN=PN(已知)}\\{∠N=∠M(已知)}\end{array}\right.$,
∴△PAN≌△PBM(ASA)
∴PA=PB(全等三角形對(duì)應(yīng)邊相等)
∵PM=PN(已知)
∴PM-PA=PN-PB,即AM=BN.
故答案分別為:PB,△PAN,△PBM,PAN.PBM,P,P,公共角,PM,PN,已知,N,M,已知,PAN,PBM,ASA,PB,全等三角形對(duì)應(yīng)邊相等,已知,PA,PB,BN.
點(diǎn)評(píng) 本題考查全等三角形的判定和性質(zhì)、解題的關(guān)鍵是熟練掌握全等三角形判定方法,屬于基礎(chǔ)題,中考?碱}型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x2-7x-12 | B. | x2+7x+12 | C. | x2-7x+12 | D. | x2+7x-12 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com