日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在ABC中,AB=AC=10E,D分別是AB,AC上的點(diǎn),BE=4,CD=2,且BD=CE,則BD=________________

          【答案】

          【解析】

          分別過點(diǎn)E,A,DBC的垂線,垂足分別為M,H,C,分別證△BME∽△BHA,△EBM∽△DCN,由相似的性質(zhì)推出CNBMEMAH之間的數(shù)量關(guān)系.設(shè)BM=2a,DN=x,通過勾股定理求出ax的值,再在RtBDN中,通過勾股定理即可求出BD的值.

          如圖,分別過點(diǎn)EA,DBC的垂線,垂足分別為MH,N,則EMAHDN,BH=CH,∴△BME∽△BHA,∴,∴設(shè)BM=2a,則BH=5a,BC=10a,∴MH=3a

          AB=AC,∴∠ABC=ACB

          又∵∠EMB=DNC=90°,∴△EBM∽△DCN,∴2,∴CNBM=a.設(shè)DN=x,則EM=2x

          RtEMCRtDNB中,MC=8a,BN=9aEM2+MC2=EC2,DN2+BN2=BD2

          BD=CE,∴EM2+MC2=DN2+BN2,即(2x2+8a2=x2+9a2,化簡(jiǎn)得:x2a2

          RtDNC中,DN2+CN2=CD2,∴x2+a2=22,∴a2+a2=4,化簡(jiǎn)得:a2,∴x2

          RtBDN中,BD

          故答案為:

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知,如圖,數(shù)軸上有A、B兩點(diǎn).

          1)線段AB的中點(diǎn)表示的數(shù)是   

          2)線段AB的長度是   ;

          3)若A、B兩點(diǎn)問時(shí)向右運(yùn)動(dòng),A點(diǎn)速度是每秒3個(gè)單位長度,B點(diǎn)速度是每秒2個(gè)單位長度,問經(jīng)過幾秒時(shí)AB2?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,平行四邊形ABCD中,CD的中點(diǎn),E是邊AD上的動(dòng)點(diǎn),EG的延長線與BC的延長線交于點(diǎn)F,連結(jié)CE,DF,下列說法不正確的是  

          A. 四邊形CEDF是平行四邊形

          B. 當(dāng)時(shí),四邊形CEDF是矩形

          C. 當(dāng)時(shí),四邊形CEDF是菱形

          D. 當(dāng)時(shí),四邊形CEDF是菱形

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(1)某學(xué)校智慧方園數(shù)學(xué)社團(tuán)遇到這樣一個(gè)題目:

          如圖1,在ABC中,點(diǎn)O在線段BC上,∠BAO=30°,OAC=75°,AO=,BO:CO=1:3,求AB的長.

          經(jīng)過社團(tuán)成員討論發(fā)現(xiàn),過點(diǎn)BBDAC,交AO的延長線于點(diǎn)D,通過構(gòu)造ABD就可以解決問題(如圖2).

          請(qǐng)回答:∠ADB=   °,AB=   

          (2)請(qǐng)參考以上解決思路,解決問題:

          如圖3,在四邊形ABCD中,對(duì)角線ACBD相交于點(diǎn)O,ACAD,AO=,ABC=ACB=75°,BO:OD=1:3,求DC的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCO的面積為15,邊OAOC2EBC的中點(diǎn),以OE為直徑的⊙O′軸于D點(diǎn),過點(diǎn)DDF⊥AE于點(diǎn)F。

          1)求OA、OC的長;

          2)求證:DF⊙O′的切線;

          3)小明在解答本題時(shí),發(fā)現(xiàn)△AOE是等腰三角形。由此,他斷定:直線BC上一定存在除點(diǎn)E以外的點(diǎn)P,使△AOP也是等腰三角形,且點(diǎn)P一定在⊙O′。你同意他的看法嗎?請(qǐng)充分說明理由。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系內(nèi),二次函數(shù)與一次函數(shù)a,b為常數(shù),且).

          1)若y1,y2的圖象都經(jīng)過點(diǎn)(2,3),求y1,y2的表達(dá)式;

          2)當(dāng)y2經(jīng)過點(diǎn)時(shí),y1也過A,B兩點(diǎn):

          m的值;

          分別在y1y2的圖象上,實(shí)數(shù)t使得當(dāng)時(shí),”,試求t的最小值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在矩形ABCD中,AB4BC5,EBC邊上的一個(gè)動(dòng)點(diǎn),DFAE,垂足為點(diǎn)F,連結(jié)CF

          1)若AEBC

          ①求證:ABE≌△DFA;②求四邊形CDFE的周長;③求tanFCE的值;

          2)探究:當(dāng)BE為何值時(shí),CDF是等腰三角形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某校有3000名學(xué)生.為了解全校學(xué)生的上學(xué)方式,該校數(shù)學(xué)興趣小組以問卷調(diào)查的形式,隨機(jī)調(diào)查了該校部分學(xué)生的主要上學(xué)方式(參與問卷調(diào)查的學(xué)生只能從以下六個(gè)種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.

          種類

          A

          B

          C

          D

          E

          F

          上學(xué)方式

          電動(dòng)車

          私家車

          公共交通

          自行車

          步行

          其他

          某校部分學(xué)生主要上學(xué)方式扇形統(tǒng)計(jì)圖某校部分學(xué)生主要上學(xué)方式條形統(tǒng)計(jì)圖

          根據(jù)以上信息,回答下列問題:

          (1)參與本次問卷調(diào)查的學(xué)生共有____人,其中選擇B類的人數(shù)有____人.

          (2)在扇形統(tǒng)計(jì)圖中,求E類對(duì)應(yīng)的扇形圓心角α的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖.

          (3)若將A、CD、E這四類上學(xué)方式視為綠色出行,請(qǐng)估計(jì)該校每天綠色出行的學(xué)生人數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四邊形ABCD中,ADBCOCD的中點(diǎn),延長AOBC的延長線于點(diǎn)E,且BCCE

          1)求證:△AOD≌△EOC;

          2)若∠BAE90°,AB6,OE4,求AD的長.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案