日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 給出銳角△ABC,以AB為直徑的圓與AB邊的高CC′及其延長(zhǎng)線交于M,N.以AC為直徑的圓與AC邊的高BB′及其延長(zhǎng)線將于P,Q.求證:M,N,P,Q四點(diǎn)共圓.
          (第19屆美國(guó)數(shù)學(xué)奧林匹克)
          證明:設(shè)PQ,MN交于K點(diǎn),連接AP,AM.
          由射影定理,得AM*AM=AC'*AB,AP*AP=AC*AB',又B、C、B'、C'四點(diǎn)共圓,
          由切割線定理,AC'*AB=AC*AB',
          ∴AM=AP,又AM=AN,AP=AQ(垂直于直徑的弦性質(zhì)),
          ∴AM=AP=AN=AQ,M、N、P、Q是共圓心為A的圓.
          須證MK•KN=PK•KQ,
          即證(MC′-KC′)(MC′+KC′)
          =(PB′-KB′)•(PB′+KB′)
          或MC′2-KC′2=PB′2-KB′2.①
          ∵AP=AM(所對(duì)弧長(zhǎng)相等),
          從而有AB′2+PB′2=AC′2+MC′2
          故MC′2-PB′2=AB′2-AC′2
          =(AK2-KB′2)-(AK2-KC′2
          =KC′2-KB′2.②
          由②即得①,命題得證.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          如圖,⊙O為△ABC的外接圓,BD為直徑,∠BAC=30°,若BC=2,則BD=______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          如圖,已知AB是⊙O的直徑,C、D是⊙O上兩點(diǎn)、且∠D=130°,則∠BAC的度數(shù)是______度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          如圖,點(diǎn)A、B、C在⊙O上,AOBC,∠AOB=50°,則∠OAC的度數(shù)是______度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          ⊙O過△ABC頂點(diǎn)A,C,且與AB,BC交于K,N(K與N不同).△ABC外接圓和△BKN外接圓相交于B和M.求證:∠BMO=90°.(第26屆IMO第五題)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          已知O點(diǎn)到圓周上的點(diǎn)的最大距離為5cm,最小距離為1cm,則此圓的半徑為______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          半徑為5的⊙O,圓心在原點(diǎn)O,點(diǎn)P(-3,4)與⊙O的位置關(guān)系是( 。
          A.在⊙O內(nèi)B.在⊙O上C.在⊙O外D.不能確定

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,以點(diǎn)O′(1,1)為圓心,OO′為半徑畫圓,判斷點(diǎn)P(-1,1),點(diǎn)Q(1,0),點(diǎn)R(2,2)和⊙O′的位置關(guān)系.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,點(diǎn)A、B在⊙O上,直線AC是⊙O的切線,OD⊥OB,連接AB交OC于點(diǎn)D.
          (1)求證:AC=CD;
          (2)若AC=2,AO=
          5
          ,求OD的長(zhǎng)度.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案