日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,菱形ABCD的周長為8,對角線BD2,EF分別是邊AD,CD上的兩個動點;且滿足AE+CF2

          1)求證:△BDE≌△BCF;

          2)判斷△BEF的形狀,并說明理由.

          【答案】1)見解析;(2BEF是等邊三角形.理由見解析

          【解析】

          1)先判定△ABD與△BCD都是等邊三角形,根據(jù)等邊三角形的性質(zhì)可得∠BDE=C=60°,再求出DE=CF,然后利用邊邊角證明兩三角形全等;
          2)根據(jù)全等三角形對應(yīng)邊相等可得BE=CF,全等三角形對應(yīng)角相等可得∠DBE=CBF,然后求出∠EBF=60°,再根據(jù)等邊三角形的判定得解,利用旋轉(zhuǎn)變換解答.

          1)證明:∵菱形ABCD的邊長為2,對角線BD2,

          ABADBD2,BCCDBD2,

          ∴△ABD與△BCD都是等邊三角形,

          ∴∠BDE=∠C60°,

          AE+CF2,

          CF2AE,

          又∵DEADAE2AE,

          DECF

          在△BDE和△BCF中,

          ∴△BDE≌△BCFSAS);

          2)解:△BEF是等邊三角形.理由如下:

          由(1)可知△BDE≌△BCF

          BEBF,∠DBE=∠CBF

          ∴∠EBF=∠DBE+DBF=∠CBF+DBF=∠DBC60°,

          ∴△BEF是等邊三角形,

          由圖可知,△BDE繞點B順時針旋轉(zhuǎn)60°即可得到△BCF

          故答案為:(1)見解析;(2)△BEF是等邊三角形.理由見解析.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在矩形ABCD中,AB=6,BC=4,點E是邊BC上一動點,把DCE沿DE折疊得DFE,射線DF交直線CB于點P,當(dāng)AFD為等腰三角形時,DP的長為_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某數(shù)學(xué)興趣小組在探究函數(shù)yx22|x|+3的圖象和性質(zhì)時,經(jīng)歷了以下探究過程:

          1)列表(完成下列表格).

          x

          3

          2

          1

          0

          1

          2

          3

          y

          6

          3

          2

             

             

             

          2

          3

          6

          2)描點并在圖中畫出函數(shù)的大致圖象;

          3)根據(jù)函數(shù)圖象,完成以下問題:

          觀察函數(shù)yx22|x|+3的圖象,以下說法正確的有   (填寫正確的序號)

          A.對稱軸是直線x1;

          B.函數(shù)yx22|x|+3的圖象有兩個最低點,其坐標(biāo)分別是(﹣1,2)、(1,2);

          C.當(dāng)﹣1x1時,yx的增大而增大;

          D.當(dāng)函數(shù)yx22|x|+3的圖象向下平移3個單位時,圖象與x軸有三個公共點;

          E.函數(shù)y=(x222|x2|+3的圖象,可以看作是函數(shù)yx22|x|+3的圖象向右平移2個單位得到.

          結(jié)合圖象探究發(fā)現(xiàn),當(dāng)m滿足   時,方程x22|x|+3m有四個解.

          設(shè)函數(shù)yx22|x|+3的圖象與其對稱軸相交于P點,當(dāng)直線yn和函數(shù)yx22|x|+3圖象只有兩個交點時,且這兩個交點與點P所構(gòu)成的三角形是等腰直角三角形,求n的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在一個不透明的口袋里裝有分別標(biāo)有數(shù)字-3、-1、0、2的四個小球,除數(shù)字不同外小球沒有任何區(qū)別,每次試驗先攪拌均勻.

          (1)從中任取一球,將球上的數(shù)字記為a,則關(guān)于x的一元二次方程ax2-2ax+a+3=0有實數(shù)根的概率________;

          (2)從中任取一球,將球上的數(shù)字作為點的橫坐標(biāo),記為x(不放回);再任取一球,將球上的數(shù)字作為點的縱坐標(biāo),記為y,試用畫樹狀圖(或列表法)表示出點(x,y)所有可能出現(xiàn)的結(jié)果,并求點(x,y)落在第二象限內(nèi)的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABC 中,AB = AC,以AB為直徑的⊙O 別交AC,BC于點 D,E,過點B作⊙O的切線, AC的延長線于點F

          (1) 求證:∠CBF =CAB;

          (2) CD = 2,,求FC的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,,分別表示使用一種白熾燈和一種節(jié)能燈的費用(費用燈的售價電費,單位:元)與照明時間(小時)的函數(shù)圖象,假設(shè)兩種燈的使用壽命都是小時,照明效果一樣.

          1)根據(jù)圖象分別求出,的函數(shù)表達式;

          2)小亮認為節(jié)能燈一定比白熾燈省錢,你是如何想的?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,三張黑桃撲克牌,背面完全相同將三張撲克牌背面朝上,洗勻后放在桌面上甲,乙兩人進行摸牌游戲,甲先從中隨機抽取一張,記下數(shù)字再放回洗勻,乙再從中隨機抽取一張.

          1)甲抽到黑桃,這一事件是   事件(填不可能隨機,必然);

          2)利用樹狀圖或列表的方法,求甲乙兩人抽到同一張撲克牌的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線的開口向上頂點為P

          1)若P點坐標(biāo)為(4,一1),求拋物線的解析式;

          2)若此拋物線經(jīng)過(4,一1),當(dāng)-1x2時,求y的取值范圍(用含a的代數(shù)式表示)

          3)若a1,且當(dāng)0x1時,拋物線上的點到x軸距離的最大值為6,求b的值

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABD中,ABAD,以AB為直徑的⊙FBD于點C,交ADECG是⊙F的切線,CGAD于點G

          1)求證:CGAD

          2)填空:

          ①若BDA的面積為80,則BCF的面積為   

          ②當(dāng)∠BAD的度數(shù)為   時,四邊形EFCD是菱形.

          查看答案和解析>>

          同步練習(xí)冊答案