日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,過點P(2,2
          2
          )作x軸的平行線交y軸于點A,交雙曲線y=
          k
          x
          (x>0)
          于點N,作PM⊥AN交精英家教網(wǎng)雙曲線y=
          k
          x
          (x>0)
          于點M,連接AM,若PN=4.
          (1)求k的值;
          (2)設(shè)直線MN解析式為y=ax+b,求不等式
          k
          x
          ≥ax+b
          的解集.
          分析:(1)首先根據(jù)點P(2,2
          2
          )的坐標(biāo)求出N點的坐標(biāo),代入反比例函數(shù)解析式即可求出;
          (2)利用圖形兩函數(shù)誰在上上面誰大,交點坐標(biāo)即是函數(shù)大小的分界點,可以直接判斷出函數(shù)的大小關(guān)系.
          解答:精英家教網(wǎng)解:(1)依題意,則AN=4+2=6,
          ∴N(6,
          2
          ),
          把N(6,
          2
          )代入y=
          k
          x
          得:
          xy=6
          2

          ∴k=6
          2
          ;

          (2)∵M(jìn)點橫坐標(biāo)為2,精英家教網(wǎng)
          ∴M點縱坐標(biāo)為
          6
          2
          2
          =3
          2
          ,
          ∴M(2,3
          2
          ),
          ∴由圖象知,
          k
          x
          ≥ax+b的解集為:
          0<x≤2或x≥6.
          點評:此題主要考查了反比例函數(shù)的性質(zhì)以及待定系數(shù)法求解析式和利用圖形判斷函數(shù)的大小關(guān)系,數(shù)形結(jié)合解決比較函數(shù)的大小關(guān)系是初中階段的難點問題,同學(xué)們重點學(xué)習(xí).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          8、如圖,過點P畫出射線PM,PN,使PM∥OA,PN∥OB,且射線PM和射線OA,射線PN和射線OB方向分別相同,量一量∠O和∠P,你能得到什么結(jié)論?如果射線PM和射線OA,射線PN和射線OB一組方向相同、另一組方向相反,∠O和∠P又有什么關(guān)系呢?如果兩組方向都相反,∠O和∠P有什么關(guān)系?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖1,在平面直角坐標(biāo)系中,A(a,0),B(0,b),且a、b滿足b=
          a2-4
          +
          4-a2
          +16
          a+2

          (1)求直線AB的解析式;
          (2)若點M為直線y=mx在第一象限上一點,且△ABM是等腰直角三角形,求m的值.
          (3)如圖3過點A的直線y=kx-2k交y軸負(fù)半軸于點P,N點的橫坐標(biāo)為-1,過N點的直線y=
          k
          2
          x-
          k
          2
          交AP于點M,給出兩個結(jié)論:①
          PM+PN
          NM
          的值是不變;②
          PM-PN
          AM
          的值是不變,只有一個結(jié)論是正確,請你判斷出正確的結(jié)論,并加以證明和求出其值.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,過點O、A(1,0)、B(0,
          3
          )作⊙M,D為⊙M上不同于點O、A的一點,則∠ODA的度數(shù)為( 。
          A、60°
          B、60°或120°
          C、30°
          D、30°或150°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,過點P(2,
          2
          )作x軸的平行線交y軸于點A,交雙曲線y=
          k
          x
          (x>0)于點N,作PM⊥AN交雙曲線y=
          k
          x
          (x>0)于點M,連接AM.已知PN=4.
          (1)求k的值;
          (2)設(shè)直線MN解析式為y=ax+b,求不等式
          k
          x
          ≥ax+b的解集.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,過點A(1,0)的直線與y軸平行,且分別與正比例函數(shù)y=k1x,y=k2x和反比例y=
          k3x
          在第一象限相交,則k1、k2、k3的大小關(guān)系是
          k2>k3>k1
          k2>k3>k1

          查看答案和解析>>

          同步練習(xí)冊答案