日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】綜合與實(shí)踐:折紙中的數(shù)學(xué)
          動手操作:
          如圖,將矩形ABCD折疊,點(diǎn)B落在AD邊上的點(diǎn)B′處,折痕為GH,再將矩形ABCD折疊,點(diǎn)D落在B′H的延長線上,對應(yīng)點(diǎn)為D′,折痕為B′E,延長GH于點(diǎn)F,O為GE的中點(diǎn).
          數(shù)學(xué)思考:

          (1)猜想:線段OB′與OD′的數(shù)量關(guān)系是(不要求說理或證明).
          (2)求證:四邊形GFEB′為平行四邊形;
          (3)拓展探究:
          如圖2,將矩形ABCD折疊,點(diǎn)B對應(yīng)點(diǎn)B′,點(diǎn)D對應(yīng)點(diǎn)為D′,折痕分別為GH、EF,∠BHG=∠DEF,延長FD′交B′H于點(diǎn)P,O為GF的中點(diǎn),試猜想B′O與OP的數(shù)量關(guān)系,并說明理由.

          【答案】
          (1)OB′=OD′
          (2)

          解:如圖1,

          由折疊得:∠GHB=∠GHB′= ∠B′HB,

          ∠DB′E=∠D′B′E= ∠D′B′D,

          ∵四邊形ABCD為矩形,

          ∴AD∥BC,

          ∴∠B′HB=′DB′D′,

          ∴∠GHB′=∠EB′H,

          ∴GF∥B′E,

          ∵∠GB′H=∠B=90°,∠B′D′E=∠D=90°,

          ∴∠GB′H=∠B′D′E,

          ∴GB′∥EF,

          ∴四邊形GB′EF為平行四邊形;


          (3)

          解:如圖2,

          OB′=OP,理由是:

          延長HB′交AD于M,延長B′O交D′P于點(diǎn)N,

          ∠B′HB=2∠GHB,∠DED′=2∠DEF,∠GHB=∠DEF,

          ∴∠B′HB=∠DED′,

          ∵AD∥BC,∠DMH=∠B′HB,

          ∴∠DED′=∠DMH,

          ∴ED′∥MH,

          ∴∠B′PN=∠ED′F=90°,

          ∴∠GB′P=∠B′PN,

          ∴GB′∥PD′,

          ∴∠B′GO=∠NFO,

          ∵∠GOB′=∠FON,GO=OF,

          ∴△GB′O≌△FNO,

          ∴B′O=NO,

          ∴B′O=OP.


          【解析】解:(1)如圖1,OB′=OD′,理由是:
          連接OF,
          由折疊得:∠GB′H=∠B=90°,∠B′D′E=∠D=90°,
          ∴∠GB′H=∠B′D′E,
          ∴GB′∥EF,
          同理得B′E∥GF,
          ∴四邊形GFEB′是平行四邊形,
          ∴OB′=OF,
          則B′、O、F共線,
          在Rt△B′D′F中,OD′= B′F=OB′,
          即OB′=OD′;
          【考點(diǎn)精析】利用平行四邊形的判定與性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知若一直線過平行四邊形兩對角線的交點(diǎn),則這條直線被一組對邊截下的線段以對角線的交點(diǎn)為中點(diǎn),并且這兩條直線二等分此平行四邊形的面積.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如果二次函數(shù)的二次項(xiàng)系數(shù)為l,則此二次函數(shù)可表示為y=x2+px+q,我們稱[p,q]為此函數(shù)的特征數(shù),如函數(shù)y=x2+2x+3的特征數(shù)是[2,3].
          (1)若一個函數(shù)的特征數(shù)為[﹣2,1],求此函數(shù)圖象的頂點(diǎn)坐標(biāo).
          (2)探究下列問題: ①若一個函數(shù)的特征數(shù)為[4,﹣1],將此函數(shù)的圖象先向右平移1個單位,再向上平移1個單位,求得到的圖象對應(yīng)的函數(shù)的特征數(shù).
          ②若一個函數(shù)的特征數(shù)為[2,3],問此函數(shù)的圖象經(jīng)過怎樣的平移,才能使得到的圖象對應(yīng)的函數(shù)的特征數(shù)為[3,4]?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABC的兩條中線AD、CE交于點(diǎn)G,且AD⊥CE,聯(lián)結(jié)BG并延長與AC交于點(diǎn)F,如果AD=9,CE=12,那么下列結(jié)論不正確的是( )

          A.AC=10
          B.AB=15
          C.BG=10
          D.BF=15

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,點(diǎn)D位于△ABC邊AC上,已知AB是AD與AC的比例中項(xiàng).
          (1)求證:∠ACB=∠ABD;
          (2)現(xiàn)有點(diǎn)E、F分別在邊AB、BC上如圖2,滿足∠EDF=∠A+∠C,當(dāng)AB=4,BC=5,CA=6時(shí),求證:DE=DF.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,Rt△ABC中,∠C=90°,∠A=30°,BC=6.
          (1)實(shí)踐操作:尺規(guī)作圖,不寫作法,保留作圖痕跡. ①作∠ABC的角平分線交AC于點(diǎn)D.
          ②作線段BD的垂直平分線,交AB于點(diǎn)E,交BC于點(diǎn)F,連接DE、DF.
          (2)推理計(jì)算:四邊形BFDE的面積為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,下列正方形網(wǎng)格的每個小正方形的邊長均為1,⊙O的半徑為n≥8 .規(guī)定:頂點(diǎn)既在圓上又是正方形格點(diǎn)的直角三角形稱為“圓格三角形”,請按下列要求各畫一個“圓格三角形”,并用陰影表示出來.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,用若干個全等的正五邊形可以拼成一個環(huán)狀,圖中所示的是前3個正五邊形的拼接情況,要完全拼成一個圓環(huán)還需要的正五邊形個數(shù)是(
          A.5
          B.6
          C.7
          D.8

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線y=﹣x2+bx+c的圖象經(jīng)過點(diǎn)A(m,0)、B(0,n),其中m、n是方程x2﹣6x+5=0的兩個實(shí)數(shù)根,且m<n.

          (1)求拋物線的解析式;
          (2)設(shè)(1)中的拋物線與x軸的另一個交點(diǎn)為C,拋物線的頂點(diǎn)為D,求C、D點(diǎn)的坐標(biāo)和△BCD的面積;
          (3)P是線段OC上一點(diǎn),過點(diǎn)P作PH⊥x軸,交拋物線于點(diǎn)H,若直線BC把△PCH分成面積相等的兩部分,求P點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某跳水隊(duì)為了解運(yùn)動員的年齡情況,作了一次年齡調(diào)查,根據(jù)跳水運(yùn)動員的年齡(單位:歲),繪制出如下的統(tǒng)計(jì)圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:

          (1)本次接受調(diào)查的跳水運(yùn)動員人數(shù)為 , 圖①中m的值為;
          (2)求統(tǒng)計(jì)的這組跳水運(yùn)動員年齡數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).

          查看答案和解析>>

          同步練習(xí)冊答案