分析 (1)直接利用角平分線的性質(zhì)得出∠DOE的度數(shù),再求出∠DOB的度數(shù),進(jìn)而得出答案;
(2)直接利用未知數(shù)表示出∠AOD、∠MOD、∠MON進(jìn)而求出答案.
解答 解:(1)∵ON平分∠DOE,
∴∠DOE=2∠EON=36°,
∵∠BOE=∠DOE+∠DOB=90°,
∴∠DOB=∠BOE-∠DOE=54°,
∴∠AOC=∠DOB=54°;
(2)∠DON=$\frac{1}{2}$∠AOE
理由:設(shè)∠DON=x°,
∵ON平分∠DOE,
∴∠DOE=2∠DON=2x°,
∵∠AOE+∠BOE=180°,∠BOE=90°,
∴∠AOE=180°-∠BOE=90°,
∴∠AOD=∠AOE+∠DOE=(90+2x)°,
∵OM平分∠AOD,
∴∠MOD=$\frac{1}{2}$(90+2x)°=(45+x)°,
∴∠MON=∠MOD-∠DON=45°,
∴∠MON=$\frac{1}{2}$∠AOE=45°.
點(diǎn)評(píng) 此題主要考查了角平分線的性質(zhì)以及垂線定義和鄰補(bǔ)角的定義,正確表示出∠AOD的度數(shù)是解題關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{a}=\frac{b^2}{a^2}$ | B. | $\frac{b+1}{a+1}=\frac{a}$ | C. | $\frac{{{a^2}-{b^2}}}{a+b}=a-b$ | D. | $\frac{a}{-a-b}=-\frac{a}{a-b}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -9 | B. | -13 | C. | -21 | D. | -25 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -|-5|=5 | B. | -2(a+3b)=-2a+6b | C. | 3m+2n=5mn | D. | x2y-2x2y=-x2y |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com