日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知圓O1與圓O2半徑的長是方程x2-7x+12=0的兩根,且O1O2=,則圓O1與圓O2的位置關(guān)系是( )
          A.相交
          B.內(nèi)切
          C.內(nèi)含
          D.外切
          【答案】分析:解答此題,先要求一元二次方程的兩根,然后根據(jù)圓與圓的位置關(guān)系判斷條件,確定兩圓之間的位置關(guān)系.
          解答:解:解方程x2-7x+12=0得x1=3,x2=4,
          ∵O1O2=,x2-x1=1,
          ∴O1O2<x2-x1,
          ∴⊙O1與⊙O內(nèi)含.
          故選C.
          點評:此題綜合考查一元二次方程的解法及兩圓的位置關(guān)系的判斷.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)系xoy中,⊙O1與x軸交于A、B兩點,與y軸正半軸交于C點,已知A(-1,0),O1(1,0)精英家教網(wǎng)精英家教網(wǎng)
          (1)求出C點的坐標(biāo);
          (2)過點C作CD∥AB交⊙O1于D,若過點C的直線恰好平分四邊形ABCD的面積,求出該直線的解析式;
          (3)如圖,已知M(1,-2
          3
          ),經(jīng)過A、M兩點有一動圓⊙O2,過O2作O2E⊥O1M于E,若經(jīng)過點A有一條直線y=kx+b(k>0)交⊙O2于F,使AF=2O2E,求出k、b的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          15、已知⊙O1與⊙O2的半經(jīng)分別為2和4,圓心距O1O2=6,則這兩圓公切線的條數(shù)為( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,⊙O1與⊙O2外切于點O,以直線O1O2為x軸,O為坐標(biāo)原點,建立平面直角坐標(biāo)系.在x軸上方的兩圓的外公切線AB與⊙O1相切于點A,與⊙O2相切于點B,直線AB交y軸于點c,若OA=3
          3
          ,OB=3.
          (1)求經(jīng)過O1、C、O2三點的拋物線的解析式;
          (2)設(shè)直線y=kx+m與(1)中的拋物線交于M、N兩點,若線段MN被y軸平分,求k的值;
          (3)在(2)的條件下,點D在y軸負(fù)半軸上.當(dāng)點D的坐標(biāo)為何值時,四邊形M精英家教網(wǎng)DNC是矩形?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          已知:如圖,⊙O1與⊙O2外切于點O,以直線O1O2為x軸,O為坐標(biāo)原點,建立平面直角坐標(biāo)系.在x軸上方的兩圓的外公切線AB與⊙O1相切于點A,與⊙O2相切于點B,直線AB交y軸于點c,若OA=3數(shù)學(xué)公式,OB=3.
          (1)求經(jīng)過O1、C、O2三點的拋物線的解析式;
          (2)設(shè)直線y=kx+m與(1)中的拋物線交于M、N兩點,若線段MN被y軸平分,求k的值;
          (3)在(2)的條件下,點D在y軸負(fù)半軸上.當(dāng)點D的坐標(biāo)為何值時,四邊形MDNC是矩形?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:1999年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(02)(解析版) 題型:解答題

          (1999•哈爾濱)已知:如圖,⊙O1與⊙O2外切于點O,以直線O1O2為x軸,O為坐標(biāo)原點,建立平面直角坐標(biāo)系.在x軸上方的兩圓的外公切線AB與⊙O1相切于點A,與⊙O2相切于點B,直線AB交y軸于點c,若OA=3,OB=3.
          (1)求經(jīng)過O1、C、O2三點的拋物線的解析式;
          (2)設(shè)直線y=kx+m與(1)中的拋物線交于M、N兩點,若線段MN被y軸平分,求k的值;
          (3)在(2)的條件下,點D在y軸負(fù)半軸上.當(dāng)點D的坐標(biāo)為何值時,四邊形MDNC是矩形?

          查看答案和解析>>

          同步練習(xí)冊答案