日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:如圖,⊙O1與⊙O2外切于點O,以直線O1O2為x軸,O為坐標原點,建立平面直角坐標系.在x軸上方的兩圓的外公切線AB與⊙O1相切于點A,與⊙O2相切于點B,直線AB交y軸于點c,若OA=3
          3
          ,OB=3.
          (1)求經(jīng)過O1、C、O2三點的拋物線的解析式;
          (2)設直線y=kx+m與(1)中的拋物線交于M、N兩點,若線段MN被y軸平分,求k的值;
          (3)在(2)的條件下,點D在y軸負半軸上.當點D的坐標為何值時,四邊形M精英家教網(wǎng)DNC是矩形?
          分析:(1)由于CO、AB都是兩圓的切線,根據(jù)切線長定理可求得OC=AC=BC,即可得到∠AOB=90°,在Rt△AOB中,根據(jù)勾股定理可求出AB的長,進而可得到OC的值,即C點的坐標;連接HA,證△HAO∽△AOB,通過相似三角形得到的比例線段即可求出OH的長,由此可求得O1的坐標,同理可求出O2的坐標,進而可用待定系數(shù)求出拋物線的解析式;
          (2)過M、N分別作y軸的垂線,設垂足為E、F,若MN被y軸平分,那么MP=PN,可證得△MPE≌△NPF,由此得到M、N的橫坐標互為相反數(shù),即兩者的和為0;可聯(lián)立直線與拋物線的解析式,可得到關于x的一元二次方程,那么M、N兩點的橫坐標即為方程的兩個根,已求得兩根的和為0,可根據(jù)韋達定理求出k的值;
          (3)根據(jù)M、N的坐標可求出MN的長,若四邊形MDNC是矩形,那么對角線MN、CD相等且互相平分,則PC=12MN,由此可求出待定系數(shù)m的值,進而可求出PC、PD的長,也就能得到D點的坐標.
          解答:精英家教網(wǎng)解:(1)如圖,
          連接HA,BK.
          ∵AB、OC是兩圓的公切線,
          ∴OC=AC=BC;
          ∴∠AOB=90°,
          ∴AB=
          OA2+OB2
          =6
          ∴OC=3
          ∴C(0,3);(1分)
          ∵HO是⊙O1的直徑,
          ∴∠HAO=∠AOB=90°;
          ∵AB是⊙O1的切線,
          ∴∠BAO=∠OHA,
          ∴△AOH∽△OBA,
          HO
          AB
          =
          OA
          BO

          HO=6
          3

          O1O=3
          3

          ∴O1的坐標是(-3
          3
          ,0)(1分)
          設經(jīng)過O1、C、O2三點的拋物線的解析式為y=ax2+bx+c;
          ∴由c=3,0=27a-3
          3
          b+c
          ,0=3a+
          3
          b+c
          可得a=-
          1
          3
          ,b=-
          2
          3
          3
          ,c=3
          y=-
          1
          3
          x2-
          2
          3
          3
          x+3
          ;(2分)

          (2)設直線y=kx+m與y軸交于點P(0,m),交拋物線于點M(x1,y1)、N(x2,y2).
          分別由M、N向y軸引垂線,垂足為E、F;
          ∵MP=NP,∠MPE=∠NPF,∠MEP=∠NFP=90°,
          ∴△MPE≌△NPF,
          ∴ME=NF,即|x1|=|x2|;
          又∵M、N在y軸兩側,
          ∴x1、x2異號,
          ∴x1+x2=0;(1分)
          y=kx+m
          y=-
          1
          3
          x2-
          2
          3
          3
          x+3

          消去y并整理,得x2+(3k+2
          3
          )x+3(m-3)=0
          x1+x2=-(3k+2
          3
          )
          x1x2=3(m-3)

          ∵x1+x2=0
          3k+2
          3
          =0

          k=-
          2
          3
          3
          (1分)

          (3)過M作NF的垂線,交NF的延長線于G.
          則NG=|x1-x2|=
          (x1+x2)2-4x1x2
          =
          12(3-m)

          MG=|y1-y2|=|k(x1-x2)|=
          16(3-m)
          =4
          3-m

          ∴MN2=NC2+MG2=28(3-m),
          MN=2
          7(3-m)
          (1分)
          ∵四邊形MDNC是矩形,
          PC=
          1
          2
          MN

          又∵PC=|3-m|,
          |3-m|=
          1
          2
          •2
          7(3-m)

          ∴m2+m-12=0,
          ∴m=-4或m=3(舍去,
          ∵點D在y軸負半軸上);(2分)
          ∴PC=7,
          ∴PD=7;
          ∴OD=OP+PD=11,
          ∴D(0,-11);
          即當點D的坐標為(0,-11)時,四邊形MDNC為矩形.(1分)
          點評:此題主要考查了相切兩圓的性質,切線長定理,直角三角形、相似三角形、全等三角形的判定和性質,以及矩形的判定等,綜合性強,難度較大.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          已知;如圖,⊙O1與⊙O2內切于點A,⊙O2的直徑AC交⊙O1于點B,⊙O2的弦FC切⊙精英家教網(wǎng)O1于點D,AD的延長線交⊙O2于點E,連接AF、EF、BD.
          (1)求證:AC•AF=AD•AE;
          (2)若O1O2=9,cos∠BAD=
          23
          ,求DE的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)已知:如圖,⊙O1與⊙O2外切于C點,AB一條外公切線,A、B分別為切點,連接AC、BC.設⊙O1的半徑為R,⊙O2的半徑為r,若tan∠ABC=
          2
          ,則
          R
          r
          的值為( 。
          A、
          2
          B、
          3
          C、2
          D、3

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (1998•南京)已知,如圖,⊙O1與⊙O2相交,點P是其中一個交點,點A在⊙O2上,AP的延長線交⊙O1于點B,AO2的延長線交⊙O1于點C、D,交⊙O2于點E,連接PC、PE、PD,且
          PC
          PD
          =
          CE
          DE
          ,過A作⊙O1的切線AQ,切點為Q.求證:
          (1)∠CPE=∠DPE;
          (2)AQ2-AP2=PC•PD.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          已知:如圖,⊙O1與⊙O2外切于A點,直線l與⊙O1、⊙O2分別切于B,C點,若⊙O1的半徑r1=2cm,⊙O2的半徑r2=3cm.求BC的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          已知:如圖,⊙O1與⊙O2相交于A、B,若兩圓半徑分別為12和5,O1O2=13,則AB=
          120
          13
          120
          13

          查看答案和解析>>

          同步練習冊答案