日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)M在第一象限,拋物線與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交與點(diǎn)C,O為坐標(biāo)原點(diǎn),如果△ABM是直角三角形,AB=2,OM=
          5

          (1)求點(diǎn)M的坐標(biāo);
          (2)求拋物線y=ax2+bx+c的解析式;
          (3)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使得△PAC為直角三角形?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
          (1)

          ∵點(diǎn)M為拋物線的頂點(diǎn),
          ∴MA=MB,
          又∵△ABM是直角三角形,
          ∴△AMB是等腰直角三角形,
          ∵AB=2,
          ∴ME=1,
          在Rt△OME中,可得OE=
          OM2-ME2
          =2,
          故可得點(diǎn)M的坐標(biāo)為(2,1).
          (2)∵AE=BE=
          1
          2
          AB=1,OE=2,
          ∴OA=1,OB=3,
          ∴點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)B的坐標(biāo)為(3,0),
          將點(diǎn)A、B、M的坐標(biāo)代入拋物線解析式可得:
          a+b+c=0
          9a+3b+c=0
          4a+2b+c=1
          ,
          解得:
          a=-1
          b=4
          c=-3

          故拋物線的解析式為:y=-x2+4x-3.
          (3)設(shè)點(diǎn)P的坐標(biāo)為(2,y),
          則AC2=10,AP2=1+y2,CP2=4+(y+3)2,
          ①當(dāng)∠PAC=90°時(shí),AC2+AP2=CP2,即10+1+y2=4+(y+3)2
          解得:y=-
          1
          3
          ,
          即此時(shí)點(diǎn)P的坐標(biāo)為(2,-
          1
          3
          );
          ②當(dāng)∠PCA=90°時(shí),AC2+CP2=AP2,即10+4+(y+3)2=1+y2
          解得:y=-
          11
          3
          ,
          即此時(shí)點(diǎn)P的坐標(biāo)為(2,-
          11
          3
          );
          ③當(dāng)∠APC=90°時(shí),AP2+CP2=AC2,即1+y2+4+(y+3)2=10,
          解得:y=-1或-2,
          即此時(shí)點(diǎn)P的坐標(biāo)為(2,-1)或(2,-2);
          綜上可得點(diǎn)P的坐標(biāo)為(2,-
          1
          3
          )或(2,-
          11
          3
          )或(2,-1)或(2,-2).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,已知拋物線y=ax2+bx經(jīng)過(guò)圓點(diǎn)O和x軸上的另一點(diǎn)A,它的對(duì)稱軸x=2與x軸交于點(diǎn)C,直線y=-2x-1與拋物線y=a2+bx交于點(diǎn)B(-2,m),且y軸、直線x=2分別交于點(diǎn)D、E.
          (1)求m的值及該拋物線對(duì)應(yīng)的函數(shù)解析式;
          (2)試判斷△ECB的形狀,并說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,已知拋物線y=ax2+bx+c與x軸交于A(1,0),B(3,0)兩點(diǎn),且過(guò)點(diǎn)(-1,16),拋物線的頂點(diǎn)是點(diǎn)C,對(duì)稱軸與x軸的交點(diǎn)為點(diǎn)D,原點(diǎn)為點(diǎn)O.在y軸的正半軸上有一動(dòng)點(diǎn)N,使以A、O、N這三點(diǎn)為頂點(diǎn)的三角形與以C、A、D這三點(diǎn)為頂點(diǎn)的三角形相似.求:
          (1)這條拋物線的解析式;
          (2)點(diǎn)N的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          在平面直角坐標(biāo)系xOy內(nèi),拋物線y=-x2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.把直線y=-x-3沿y軸翻折后恰好經(jīng)過(guò)B、C兩點(diǎn).
          (1)求拋物線的解析式;
          (2)設(shè)拋物線的頂點(diǎn)為D,在坐標(biāo)軸上是否存在這樣的點(diǎn)F,使得∠DFB=∠DCB?若存在,求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知二次函數(shù)y=ax2+bx+3的圖象經(jīng)過(guò)(1,
          21
          4
          ),(2,
          11
          2
          )兩點(diǎn),與x軸的兩個(gè)交點(diǎn)的右邊一個(gè)交點(diǎn)為點(diǎn)A,與y軸交于點(diǎn)B.
          (1)求此二次函數(shù)的解析式并畫出這個(gè)二次函數(shù)的圖象;
          (2)求線段AB的中垂線的函數(shù)解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,已知二次函數(shù)y=-x2+bx+c(c>0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,且OB=OC=3,頂點(diǎn)為M.
          (1)求二次函數(shù)的解析式;
          (2)點(diǎn)P為線段BM上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線PQ,垂足為Q,若OQ=m,四邊形ACPQ的面積為S,求S關(guān)于m的函數(shù)解析式,并寫出m的取值范圍;
          (3)探索:線段BM上是否存在點(diǎn)N,使△NMC為等腰三角形?如果存在,求出點(diǎn)N的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          某市舉行釣魚比賽,如圖,選手甲釣到了一條大魚,魚竿被拉彎近似可看作以A為最高點(diǎn)的一條拋物線,魚線AB長(zhǎng)6m,魚隱約在水面了,估計(jì)魚離魚竿支點(diǎn)有8m,此時(shí)魚竿魚線呈一個(gè)平面,且與水平面夾腳α恰好為60°,以魚竿支點(diǎn)為原點(diǎn),則魚竿所在拋物線的解析式為_(kāi)_____.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,已知直線y=x與拋物線y=
          1
          2
          x2
          交于A、B兩點(diǎn).
          (1)求交點(diǎn)A、B的坐標(biāo);
          (2)記一次函數(shù)y=x的函數(shù)值為y1,二次函數(shù)y=
          1
          2
          x2
          的函數(shù)值為y2.若y1>y2,求x的取值范圍;
          (3)在該拋物線上存在幾個(gè)點(diǎn),使得每個(gè)點(diǎn)與AB構(gòu)成的三角形為等腰三角形?并求出不少于3個(gè)滿足條件的點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知如圖,拋物線t=ax2+bx+c與x軸相交于B(1,0)、C(4,0)兩點(diǎn),與y軸的正半軸相交于A點(diǎn),過(guò)A、B、C三點(diǎn)的⊙P與y軸相切于點(diǎn)A,M為y軸負(fù)半軸上的一個(gè)動(dòng)點(diǎn),直線MB交拋物線于N,交⊙P于D.
          (1)填空:A點(diǎn)坐標(biāo)是______,⊙P半徑的長(zhǎng)是______,a=______,b=______,c=______;
          (2)若S△BNC:S△AOB=15:2,求N點(diǎn)的坐標(biāo);
          (3)若△AOB與以A、B、D為頂點(diǎn)的三角形相似,求MB•MD的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案