日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知∠BDC+∠EFC=180°,∠DEF=∠B.
          (1)求證:∠AED=∠ACB(說明:寫出每一步推理的依據(jù));
          (2)若D、E、F分別是AB、AC、CD邊上的中點,S四邊形ADFE=6,求S△ABC
          分析:(1)由BDC+∠EFC=180°和∠EFC+∠DFE=180°得到∠BDC=∠DFE,根據(jù)平行線的判定得AB∥EF,則∠ADE=∠DEF,而∠DEF=∠B,所以∠ADE=∠B,于是可判斷DE∥BC,然后根據(jù)平行線的性質(zhì)得到∠AED=∠ACB;
          (2)由E為AC的中點,根據(jù)三角形面積公式得到S△ADE=S△CDE=
          1
          2
          S△ADC,再由F為DC的中點得S△DEF=S△CEF=
          1
          2
          S△DEC,而S四邊形ADFE=6,則S△ADE+
          1
          2
          S△EDC=6,可計算出S△ADE=4,則S△ADC=8,然后利用D為AB的中點,根據(jù)S△ABC=2S△ADC進行計算即可.
          解答:(1)證明:∵∠BDC+∠EFC=180°(已知),
          而∠EFC+∠DFE=180°(鄰補角的定義),
          ∴∠BDC=∠DFE(等角的補角相等),
          ∴AB∥EF(內(nèi)錯角相等,兩直線平行),
          ∴∠ADE=∠DEF(兩直線平行,內(nèi)錯角相等),
          ∵∠DEF=∠B(已知),
          ∴∠ADE=∠B(等量代換),
          ∴DE∥BC(同位角相等,兩直線平行),
          ∴∠AED=∠ACB(兩直線平行,同位角相等);
          (2)解:∵E為AC的中點,
          ∴S△ADE=S△CDE=
          1
          2
          S△ADC
          ∵F為DC的中點,
          ∴S△DEF=S△CEF=
          1
          2
          S△DEC
          ∵S四邊形ADFE=6,
          ∴S△ADE+
          1
          2
          S△EDC=6,
          3
          2
          S△ADE=6,
          ∴S△ADE=4,
          ∴S△ADC=2×4=8,
          ∵D為AB的中點,
          ∴S△ABC=2S△ADC=2×8=16.
          點評:本題考查了行線的判定與性質(zhì):平行線的判定是由角的數(shù)量關(guān)系判斷兩直線的位置關(guān)系.平行線的性質(zhì)是由平行關(guān)系來尋找角的數(shù)量關(guān)系;應(yīng)用平行線的判定和性質(zhì)定理時,一定要弄清題設(shè)和結(jié)論,切莫混淆.也考查了三角形面積公式.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          25、如圖,已知∠BDC=∠ACD,∠ADB=∠BCA,求證:△ADC≌△BCD.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知∠BDC=142°,∠B=34°,∠C=28°,則∠A=
          80
          80
          度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知∠BDC=142°,∠B=34°,∠C=28°,則∠A=
          80°
          80°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知,如圖,已知∠BDC=110°,∠B=20°,∠C=30°,求∠A的度數(shù).

          查看答案和解析>>

          同步練習(xí)冊答案