日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,△OAB中,OA =" OB" = 10,∠AOB = 80°,以點O為圓心,6為半徑的優(yōu)弧分別交OA,OB于點M,N.

          (1)點P在右半弧上(∠BOP是銳角),將OP繞點O逆時針旋轉(zhuǎn)80°得OP′.
          求證:AP = BP′;
          (2)點T在左半弧上,若AT與弧相切,求點T到OA的距離;
          (3)設(shè)點Q在優(yōu)弧上,當(dāng)△AOQ的面積最大時,直接寫出∠BOQ的度數(shù).
          (1)根據(jù)已知得出∠AOP=∠BOP′,從進而由SAS得出△AOP≌△BOP′,即可得出答案。
          (2)
          (3)10°或170°

          分析:(1)根據(jù)已知得出∠AOP=∠BOP′,從進而由SAS得出△AOP≌△BOP′,即可得出答案。
          (1)證明:如圖1,∵∠AOP=∠AOB+∠BOP=80°+∠BOP,

          ∠BOP′=∠POP′+∠BOP=80°+∠BOP,
          ∴∠AOP=∠BOP′。
          ∵在△AOP和△BOP′中,
          ∴△AOP≌△BOP′(SAS)。
          ∴AP=BP′。
          (2)利用切線的性質(zhì)得出∠ATO=90°,再利用勾股定理求出AT的長,進而得出TH的長即可得出答案。
          解:如圖1,連接OT,過點T作TH⊥OA于點H,
          ∵AT與相切,∴∠ATO=90°。
          。
          ×OA×TH=×AT×OT,
          ×10×TH=×8×6,解得:TH=。
          ∴點T到OA的距離為。
          (3)如圖2,當(dāng)OQ⊥OA時,△AOQ的面積最大。理由如下:

          當(dāng)Q點在優(yōu)弧左側(cè)上,
          ∵OQ⊥OA,
          ∴QO是△AOQ中最長的高,則△AOQ的面積最大。
          ∴∠BOQ=∠AOQ+∠AOB=90°+80°=170°。
          當(dāng)Q點在優(yōu)弧右側(cè)上,
          ∵OQ⊥OA,
          ∴QO是△AOQ中最長的高,則△AOQ的面積最大。
          ∴∠BOQ=∠AOQ--∠AOB=90°-80°=10°。
          綜上所述:當(dāng)∠BOQ的度數(shù)為10°或170°時,△AOQ的面積最大。
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖1,正方形ABCD的邊長為2,點M是BC的中點,P是線段MC上的一個動點(不與M、C重合),以AB為直徑作⊙O,過點P作⊙O的切線,交AD于點F,切點為E.

          (1)求證:OF∥BE;
          (2)設(shè)BP=x,AF=y,求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍;
          (3)延長DC、FP交于點G,連接OE并延長交直線DC與H(圖2),問是否存在點P,使△EFO∽△EHG(E、F、O與E、H、G為對應(yīng)點)?如果存在,試求(2)中x和y的值;如果不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          如圖,AB是⊙O的直徑,AB垂直于弦CD,∠BOC=70°,則∠ABD=
          A.20°B.46°C.55°D.70°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          如圖,AB是半圓O的直徑,且AB=8,點C為半圓上的一點.將此半圓沿BC所在的直線折疊,若圓弧BC恰好過圓心O,則圖中陰影部分的面積是     .(結(jié)果保留π)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          如圖,在△ABC中,AB=4,AC=6,∠BAC=60º,∠BAC的角平分線交△ABC的外接圓⊙O于點E,則AE的長為       .

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,已知⊙O的半徑為5,弦AB=8,OC⊥AB于C,求OC的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          在一個圓中,給出下列命題,其中正確的是
          A.若圓心到兩條直線的距離都等于圓的半徑,則這兩條直線不可能垂直
          B.若圓心到兩條直線的距離都小于圓的半徑,則這兩條直線與圓一定有4個公共點 
          C.若兩條弦所在直線不平行,則這兩條弦可能在圓內(nèi)有公共點 
          D.若兩條弦平行,則這兩條弦之間的距離一定小于圓的半徑

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在Rt△ABC中,∠BAC= Rt∠,AB=AC=2,以AB為直徑的⊙O交BC于D,

          (1)求證:點D平分弧AB;
          (2)求圖中陰影部分的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,已知點E在直角△ABC的斜邊AB上,以AE為直徑的⊙O與直角邊BC相切于點D.

          (1)求證:AD平分∠BAC;
          (2)若BE=2,BD=4,求⊙O的半徑.

          查看答案和解析>>

          同步練習(xí)冊答案